kl800.com省心范文网

山东省菏泽市郓城高级中学2017届高三上学期期中考试数学(理)试题 Word版含答案Word版含答案.doc


2016-2017 学年度上学期高三期中数学(理)试卷 考试时间:120 分钟 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上,在试卷上答题无效.

第 I 卷(共 50 分) 一、选择题:本大题共十小题,每小题 5 分.在每小题给出的四个选项中,只有一项是符合题 目要求的. 1.已知全集 U ? R ,集合 A ? {x | 1 ? x ? 3} , B ? {x | x ? 2} ,则 A ? CU B 等于( A. {x |1 ? x ? 2} B. {x |1 ? x ? 2}
| x|



C. {x |1 ? x ? 2}

D. {x |1 ? x ? 3} )

2. 下列函数中, 与函数 y ? ? e 的奇偶性相同, 且在 (??,0) 上单调性也相同的是 ( A. y ? ?

1 x

B. y ? ln | x | D. y ? ? x ? 2
2

C. y ? x ? 3
3

3.已知函数 y ? f ( x ? 1) 定义域是 [ ?2 , 3] ,则 y ? f (2 x ? 1) 的定义域是 A. [0, ] B. [ ?1, 4] C. [ ?5,5] D. [ ?3, 7]





5 2

4.若“ 0 ? x ? 4 ”是“ ( x ? a )[ x ? (a ? 2)] ? 0 ”的必要不充分条件,则实数 a 的取值范 围是( A. (0,2) ) B. [0,2] C. [?2,0] D. (?2,0)

5.下列四种说法中, ①命题“存在 x ? R, x ? x ? 0 ”的否定是“对于任意 x ? R, x ? x ? 0 ”;
2 2

②命题“ p 且 q 为真”是“ p 或 q 为真”的必要不充分条件; ③已知幂函数 f ( x) ? x? 的图象经过点 (2,

④已知向量 a ? (3, ?4) , b ? (2,1) ,则向量 a 在向量 b 方向上的投影是 说法正确的个数是( ) A.1 B.2 C .3 D.4

?

?

1 2 ) ,则 f (4) 的值等于 ; 2 2

?

?

2 . 5

?? x 2 ? ax ? 5, ( x ? 1) ? 6.已知函数 f ( x) ? ? a 是 R 上的增函数,则 a 的取值范围是( ? ( x>1) ?x
A. ?3 ≤ a <0 7.函数 y ? B. ?3 ≤ a ≤ ?2 C. a ≤ ?2 D. a <0 ) y x 1 O1 C x O y 1 1 x



e x ? e? x 的图像大致为( e x ? e? x
y 1 O 1 A x 1 y O1 B

A 8. 已知函数 f ( x) ? cos( x ? 的图象( A. )

B

C

D

?
3

则要得到其导函数 y ? f '( x) 的图象, 只需将函数 y ? f ( x) ),

2 2? 2? C.向右平移 个单位 D.左平移 个单位 3 3

向右平移

?

个单位 B.向左平移

?
2

个单位

9.设函数 f ( x) 在 R 上可导,其导函数为 f ?( x) ,且函数 y ? (1 ? x) f ?( x) 的图像如图所示, 则下列结论中一定成立的是( A. B. )

函数 f ( x) 有极大值 f (2) 和极小值 f (1) B.函数 f ( x) 有极大值 f (?2) 和极小值 f (1)

C.函数 f ( x) 有极大值 f (2) 和极小值 f (?2) D.函数 f ( x) 有极大值 f (?2) 和极小值 f (2) 10.定义在 R 上的函数 f ( x) 满足: f ?( x) ? 1 ? f ( x) , f (0) ? 6 , f ?( x) 是 f ( x) 的导函数, 则不等式 e f ( x) ? e ? 5 (其中 e 为自然对数的底数)的解集为(
x x



A. ? 0, ?? ? C. ? ??, 0 ? U ?1, ?? ?

B. ? ??, 0 ? U ? 3, ?? ? D. ? 3, ?? ? 第 II 卷(共 100 分)

二、填空题:本大题共 5 小题,每小题 5 分,共 25 分. 11.已知命题 p : m ? 0 ,命题 q : ?x ? R, x ? mx ? 1 ? 0 成立,若“ p ? q ”为真命题,则
2

实数 m 的取值范围是_ 12 .若函数 f ( x) ? ______.

_



1 3 ax ? ax 2 ? (2a ? 3) x ? 1 在 R 上存在极值,则实数 a 的取值范围是 3

13. 过点 A(1,1) 作曲线 y ? x ( x ? 0) 的切线,设该切线与曲线及 x 轴所围图形的面积为 S , 则
2

S ?.
14.在 ?ABC 中,角 A、B、C 的对边分别为 a, b, c ,且满足 ( 2a ? c) BA ? BC ? cCB ? CA. 则角 B 的大小为;

??? ? ??? ?

??? ? ??? ?

sin ?x, x ? [0,2], ? ? 15.对于函数 f ( x) ? ? 1 ,有下列 5 个结论: f ( x ? 2), x ? (2,??), ? ?2
①任取 x1 , x2 ? [0,??] ,都有 | f ( x1 ) ? f ( x2 ) |? 2 ; ②函数 y ? f ( x) 在 [4,5] 上单调递增; ③ f ( x) ? 2kf ( x ? 2k )(k ? N ) ,对一切 x ? [0,??) 恒成立;
*

④函数 y ? f ( x) ? ln( x ? 1) 有 3 个零点; ⑤若关于 x 的方程 f ( x) ? m(m ? 0) 有且只有两个不同的实根 x1 , x2 ,则 x1 ? x2 ? 3 . 则其中所有正确结论的序号是.

三、解答题:解答应写出必要的文字说明,证明过程或演算步骤. 16. (本题 12 分)已知集合 A ? ? x

? x ?3 ? ? 1 ? ? 1? ,集合 B ? ? x ? 2 x ? 2 ? . ? 2x ? ? 8 ?

(1)求 A ? B ; (2)若集合 C ? x 2a ? x ? a ? 1 ,且 ( A ? B ) ? C ,求实数 a 的取值范 围.

?

?

2 17. (本题 12 分)已知函数 f ( x) ? 2 3 sin x ? cos x ? 2 cos x ( x ? R ) .

(Ⅰ)求函数 f ( x) 的最小正周期及单调递减区间;

? ?? (Ⅱ)若 x ? ?0, ? ,求 f ( x) 的值域. ? 2?
18. (本题 12 分)在△ABC 中,a,b,c 分别为内角 A,B,C 的对边, 面积 S ? (1)求角 C 的大小; (2)设函数 f ( x) ? 3 sin x cos x ? cos 2 x ,求 f ( B ) 的最大值,及取得最大值时角 B 的值. 2 2 2 19. (本题 12 分)在淘宝网上,某店铺专卖孝感某种特产.由以往的经验表明,不考虑其他 因素,该特产每日的销售量 y (单位:千克)与销售价格 x (单位:元/千克, 1 ? x ? 5 ) 满 足 : 当 1 ? x ? 3 时 , y ? a ( x ? 3) 2 ?

3 ab cos C 2

b ,(a, b为常数); 当 3 ? x ? 5 时 , x ?1

y ? ?70 x ? 490 .已知当销售价格为 2 元/千克时,每日可售出该特产 600 千克;当销售价
格为 3 元/千克时,每日可售出 150 千克. (1)求 a, b 的值,并确定 y 关于 x 的函数解析式; (2)若该特产的销售成本为 1 元/千克,试确定销售价格 x 的值,使店铺每日销售该特产所 获利润 f ( x) 最大( x 精确到 0.1 元/千克) . 20. (本题 13 分) (10 分)已知函数 f ( x) ? x ? a ln x(a ? R ) (1)当 a ? 2 时,求曲线 y ? f ( x) 在点 A(1, f (1)) 处的切线方程; (2)求函数 y ? f ( x) 的极值. 21. (本题 14 分) (本小题满分 12 分)已知函数 f ( x) ? kx , g ( x) ? (1)求函数 g ( x) ?

ln x x

ln x 的单调递增区间; x

(2)若不等式 f ( x) ? g ( x) 在区间(0, ??) 上恒成立,求 k 的取值范围; (3)求证:

ln 2 ln 3 ln n 1 ? 4 ??? 4 ? 4 2e 2 3 n
参考答案(理)

1.A.【解析】? B ? {x | x ? 2} ,? CU B ? ?x | x ? 2? ,则 A ? CU B ? ?x | 1 ? x ? 2?. 考点:集合的运算. 2.D.【解析】因为 f (? x) ? ?e
?x

? ?e

x

? f ( x) ,所以 y ? ?e| x| 是偶函数,且在 (??, 0) 上

单调递增, 与之相同的只有 D 选项, 因为 A 选项是奇函数, 不合题意; B 选项是在 (??, 0) 上 单调递减;C 选项为非奇非偶函数,不合题意,故选 D. 考点:函数的单调性与奇偶性. 3 . A 【 解 析 】 设 t ? x ? 1 , 由 x ? [ ?2 , 3] , 则 ? 1 ? t ? 4 , 则 有 ? 1 ? 2 x ? 1 ? 4 , 所 以

5 x ? [ 0, ] . 2
考点:对函数定义域的理解。 4 . B. 【解析】因为 ( x ? a )[ x ? (a ? 2)] ? 0 ,所以 a ? x ? a ? 2 ,又由“ 0 ? x ? 4 ”是 “ ( x ? a )[ x ? (a ? 2)] ? 0 ” 的 必 要 不 充 分 条 件 知 , 集 合 {x a ? x ? a ? 2} 是 集 合

{x 0 ? x ? 4} 的子集,即 ?

?a ? 0 (其中等 ?a ? 2 ? 4

号不同时成立) ,所以, a ? [0,2] ,故选 B. 考点:充分必要条件;一元二次不等式的解法. 5.A【解析】①命题“存在 x∈R,x2-x>0”的否定是“对于任意 x∈R,x2-x≤0”,故①不正确; ②命题“p 且 q 为真”,则命题 p、q 均为真,所以“p 或 q 为真”.反之“p 或 q 为真”,则 p、q 不见得都真, 所以不一定有“p 且 q 为真”所以命题“p 且 q 为真”是“p 或 q 为真”的充分不必要 条件,故命题②不正确;③由幂函数 f(x)=xα 的图象经过点(2,

2 2 ) ,所以 2α= , 2 2

1 1 ? ? ? 1 1 ,所以幂函数为 f ( x) ? x 2 ,所以 f (4) ? 4 2 ? ,所以命题③正确;④向量 a 2 2 ? ? ? ? ? ? a ?b 2 2 5 在向量 b 方向上的投影是 a cos ? ? ? ? , ? 是 a 和 b 的夹角,故④错误. ? 5 5 b

所以 α= ?

考点:命题真假的判断. 6.B【解析】 函数 f ( x) ? ? x ? ax ? 5( x ? 1) 的对称轴 x ? ? a 2 ,要是函数在 R 上是增函数,
2

则应满足, a ? 0 , ?

a ? 1 且 ? 1 ? a ? 5 ? a ,解得 ?3 ≤ a ≤ ?2 . 2

考点:函数的单调性. 7. A 【解析】 y ?

e x ? e? x 2 为奇函数且 x ? 0 时,函数无意义,可排除 C , D , ? 1? 2x x ?x e ?e e ?1

又在 (??, 0), (0, ??) 是减函数,故选 A . 考点:1.函数的奇偶性;2.函数的单调性;3.函数的图象. 8.B【解析】函数 f ? x ? ? cos ? x ? 数 f ? x ? ? cos ? x ?

? ?

??

?? ? ? 5? ? ? x ? ,所以函 ? ,? f ' ? x ? ? ? sin ? x ? ? ? cos ? 3? 3? ? ? 6 ?

? ?

??

? 所以将函数函数 y ? f ( x) 的图象上所有的点向左平移 个单位长 ?, 2 3?

度得到 y ? cos ? x ?

? ?

?
3

?

??

5? ? ? ? ? cos ? x ? ? ,故选 B. 2? 6 ? ?

考点:函数 y ? A sin ?? x ? ? ? 的图象变换. 9.D.【解析】由函数 y ? (1 ? x) f ?( x) 的图像,可得:当 x ? ?2 时, y ? 0,1 ? x ? 0 ,则

f ' ( x) ? 0 ; 当 ? 2 ? x ? 1 时 , y ? 0,1 ? x ? 0 , 则 f ' ( x) ? 0 ; 当 1 ? x ? 2 时 ,
y ? 0,1 ? x ? 0 , 则 f ' ( x) ? 0 ; 当 x ? 2 时 , y ? 0,1 ? x ? 0 , 则 f ' ( x) ? 0 ; 则 x ? (??,?2) ? (2,??) , f ' ( x) ? 0 ; x ? (?2,2) , f ' ( x) ? 0 ,所以函数 f ( x) 有极大值
f (?2) 和极小值 f (2) .
考点:函数的极值. 10 . A 【 解 析 】 由 题 意 可 知 不 等 式 为 e f ? x ? ? e ? 5 ? 0 , 设
x x

g ? x ? ? ex f ? x? ? ex ? 5 ? g? ? x? ? ex f ? x? ? ex f ? ? x? ? ex ? ex ? ? ? f? ? x? ?1? ? f? x ? ?0 所
以函数 g ? x ? 在定义域上单调递增,又因为 g ? 0 ? ? 0 ,所以 g ? x ? ? 0 的解集为 x ? 0 考点:导数在在函数单调性中的应用. 11 . ?2 ? m ? 0 【 解 析 】 因 为 命 题 q : ?x ? R, x ? mx ? 1 ? 0 成 立 , 所 以
2

? ? b 2 ? 4ac ? m 2 ? 4 ? 0 ? ?2 ? m ? 2 ;
又因为“ p ? q ”为真命题,所以 ?

?m ? 0 ? ?2 ? m ? 0 . ?? 2 ? m ? 2

考点:命题间的关系. 12 . (0,3) . 【 解析】 由题 意知, 函数 的导 数为 f ( x) ? ax ? 2ax ? 2a ? 3 , 因为函 数
' 2

1 f ( x) ? ax 3 ? ax 2 ? (2a ? 3) x ? 1 在 R 上存在极值,所以 f ' ( x) ? 0 有两个不等实根,其判 3
别式 ? ? 4a ? 4a (2a ? 3) ? 0 ,所以 0 ? a ? 3 ,所以 a 的取值范围为 (0,3) .故应填 (0,3) .
2

考点:利用导数研究函数的极值. 13.

1 .【解析】由题只需求出在 A 点处的切线方程,故先利用导数求出在切点处的导函数 12

值,再结合导数的几何意义即可求出切线的斜率从而得到切线的方程进而求得面积. 过点 A 的切线的斜率为 k ? y ' |x ?1 ? 2 ,故过点 A 的切线 l 的方程为 y ? 1 ? 2(x ? 1) ,即 y=2x-1,令 y=0,得 x= ,

1 2

x3 1 1 1 1 1 1 1 1 2 x dx = |0 = , S?ABC= ? ?12= , S?ABO= ?1 ? S=S?ABO ? S?ABC= ? ? . 0 3 3 2 2 4 3 4 12

考点:利用导数研究曲线上某点切线方程. 14 .

?
4

.【解析】由平面向量的数量积定义,得

?

2a ? c ac cos B ? abc cos C , 即

?

?

2a ? c cos B ? b cos C , 由 正 弦 定 理 , 得

?

?

2 sin A ? sin C cos B ? sin B cos C , 即

?

2 sin A cos B ? sin C cos B ? sin B cos C ,
即 2 sin A cos B ? sin A ,? sin A ? 0 ,? cos B ? 考点:平面向量的数量积、正弦定理. 15.①④⑤【解析】 : sin ? x 在 ? 0, 2? 上恰好为一个周期,分段函数第二段是一个类周期函数且周期为 2 ,最值 每

2 ? ,又? 0 ? B ? ? ,? B ? . 2 4

2





















.













f ? x ?max ? 1, f ? x ?min ? ?1, f ? x ?max ? f ? x ?min ? 2 .②错误,因为 [4,5] 的单调性和 ? 0,1? 的

单 调 性 一 致 , 而 sin ? x 在

?0,1?

有 增 有 减 . ③ 错 误 , 依 题 意 应 为

f ( x) ? ?

1 3 f ( x ? 2k )(如k ? ?1) .画出 f ? x ? , ln ? x ? 1? 的图象如下图所示,其中 x ? 是 2k 2

sin ? x 在 ?1, 2? 上的对称轴,故由图可知④⑤正确.

考点:分段函数,函数单调性,函数零点. 16. (1) (-3,0) ; (2) ?

3 ? a ? ?1 或 a ? 1 . 2

【解析】 (1)由题可得 A ? [?3, 0) , B ? (?3,1) ,所以 A ? B ? (?3, 0) . (2)由题 C ? ? 时, 2a ? a ? 1 ? a ? 1 ;

? 2a ? a ? 1 3 ? C ? ? 时, ?2a ? ?3 ? ? ? a ? ?1 ; 2 ?a ? 1 ? 0 ?
综上: ?

3 ? a ? ?1 或 a ? 1 . 2

考点:集合的交,并,补的混合运算 17. (Ⅰ) ? 【解析】 (1)由题设 f ? x ? ? 2 3 sin x ? cos x ? 2 cos x ? 3 sin 2 x ? cos 2 x ? 1
2

5? ?? ? ? k? , ? k? ?, k ? Z ; (Ⅱ) ? ?2,1? . 6 ?3 ?

? 3 ? 1 ?? ? ? 2? 2 x ? ? ?1 . ? 2 sin 2 x ? 2 cos 2 x ? ? ? 1 ? 2sin ? 6? ? ? ?
所以函数 f ? x ? 的最小正周期 T ? ? , 又由 2k? ?

?
2

? 2x ?

?
6

? 2 k? ?

3? ? 5? , k ? z 得 k? ? ? x ? 2 k? ? ,k ? z , 2 3 3

所以函数的单调递减区间为: ?

5? ?? ? ? k? , ? k? ?, k ? Z ; 6 ?3 ?

(2)由 0 ? x ?

?
2

得?

?
6

? 2x ?

?
6

?

5? 1 ?? ? ,所以 ? ? sin ? 2 x ? ? ? 1 6 2 6? ?

所以 ?2 ? 2sin ? 2 x ?

? ?

??

? ?1 ? 1 6?

f ( x) ? ?? 2,1?
考点:1、三角函数的恒等变换;2、三角函数的性质. 18. (1) C ?

?
3

; (2) B ?

? 3 时, f ( B ) 有最大值是 . 3 2
1分

【解析】 (1)由 S=

3 1 1 abs1n C 及题设条件得 abs1n C = abcos C 2 2 2
2分 4分

即 s1n C = 3 cos C ,? tan C = 3 ,

? 0< C < ? ,? C ?
(2) f ( x) ?

?
3

3 1 1 x x x sin x ? cos x ? 3 sin cos ? cos 2 ? 2 2 2 2 2 2

7分

? 1 9分 ? sin( x ? ) ? , 6 2 2? ? ? 5? ? ∵ C = ∴ B ? (0, (没讨论,扣 1 分) 10 分 )∴ ? B? ? 3 3 6 6 6 ? ? ? 3 当 B ? ? ,即 B ? 时, f ( B ) 有最大值是 12 分 6 2 3 2
考点:1.和差倍半的三角函数;2.三角形的面积;3.三角函数的图象和性质.
300 ? 300( x ? 3) 2 ? ,1 ? x ? 3 ; . 7 元的值,使店铺所获利润最 19. (1) y ? ? (2)当销售价格为 1 x ?1 ? ? ?? 70 x ? 490,3 ? x ? 5

大. 【解析】 (1)由题意: x ? 2 时 y ? 600, ? a ? b ? 600, 又∵ x ? 3 时 y ? 150, ? b ? 300 . 2分 4分

300 ? 300( x ? 3) 2 ? ,1 ? x ? 3 ∴ y 关于 x 的函数解析式为: y ? ? x ?1 ? ? ?? 70 x ? 490,3 ? x ? 5
2 ? (2)由题意: f ( x) ? y ( x ? 1) ? ?300( x ? 3) ( x ? 1) ? 300,1 ? x ? 3 , ?(?70 x ? 490)( x ? 1),3 ? x ? 5

6分

当 1 ? x ? 3 , f ( x) ? 300( x ? 3) 2 ( x ? 1) ? 300 ? 300( x 3 ? 7 x 2 ? 15 x ? 8) ,
f ?( x) ? 300(3 x 2 ? 14 x ? 15) ? (3 x ? 5)( x ? 3)

∴x?

5 5900 时有最大值 。 3 9

8分

当 3 ? x ? 5 时, f ( x) ? (?70 x ? 490)( x ? 1) ∴ x ? 4 时有最大值 630 10 分

5900 9 5 5900 ∴当 x ? 时 f ( x) 有最大值 3 9
∵ 630 <

. 7 元的值,使店铺所获利润最大. 即当销售价格为 1
考点:1.分段函数;2.函数的应用;3.二次函数的性质. 20. (1) x ? y ? 2 ? 0 . (2)当 a ? 0 时,函数 f ( x ) 无极值

12 分

当 a ? 0 时,函数 f ( x ) 在 x ? a 处取得极小值 a ? a ln a ,无极大值. 【解析】 (1)当 a ? 2 时, f ( x ) ? x ? 2 ln x , f ?( x ) ? 1 ?

2 ( x ? 0) , 计算 f (1) ? 1, f ?(1) ? ?1 ,由直线方 x

程的点斜式即得曲线在点 A(1, f (1)) 处的切线方程 x ? y ? 2 ? 0 . (2)由 f ?( x ) ? 1 ?

a x?a ? , x ? 0 可知,分 a ? 0 , a ? 0 讨论函数的单调性及极值情况. x x a . x

试题解析:函数 f ( x ) 的定义域为 (0, ??) , f ?( x ) ? 1 ?

(1)当 a ? 2 时, f ( x ) ? x ? 2 ln x , f ?( x ) ? 1 ?

2 ( x ? 0) , ? f (1) ? 1, f ?(1) ? ?1 , x

? y ? f ( x ) 在点 A(1, f (1)) 处的切线方程为 y ? 1 ? ?( x ? 1) ,
即x? y?2?0. (2)由 f ?( x ) ? 1 ?

a x?a ? , x ? 0 可知: x x

①当 a ? 0 时, f ?( x ) ? 0 ,函数 f ( x ) 为 (0, ??) 上的增函数,函数 f ( x ) 无极值; ②当 a ? 0 时,由 f ?( x ) ? 0 ,解得 x ? a ;

? x ? (0, a ) 时, f ?( x ) ? 0 , x ? (a, ??) 时, f ?( x ) ? 0 ? f ( x ) 在 x ? a 处取得极小值,且极小值为 f (a ) ? a ? a ln a ,无极大值.
综上:当 a ? 0 时,函数 f ( x ) 无极值 当 a ? 0 时,函数 f ( x ) 在 x ? a 处取得极小值 a ? a ln a ,无极大值. 考点:1.导数的几何意义;2.应用导数研究函数的单调性、极值. 21. (1)单调递增区间为 (0, e) ; (2) k ? 【解析】 (1)∵ g ( x) ? ∴ g ?( x) ?

1 ; (3)见解析. 2e

1 ? ln x 令 g ?( x) ? 0 ,得 0 ? x ? e x2 ln x 故函数 g ( x) ? 的单调递增区间为 (0, e) 3 分 x ln x ln x ln x ln x (2)由 kx ? 得 k ? 2 ,令 h( x) ? 2 ,则问题转化成 k 不小于 h( x) ? 2 的最大 x x x x
值?? 5 分

ln x ( x ? 0) x

1 ? 2 ln x 6分 x3 1 ? 2 ln x 令 h '( x) ? ? 0得 x ? e x3
又 h '( x) ? 当 x 在 (0, ??) 内变化时, h '( x), h( x) 变化情况如下表:

由表知当 x ? 因此 k ?

e 时,函数 h( x) 取得最大值,且最大值为
9分

1 2e

8分

1 2e

ln x 1 ln x 1 1 ? ,? 4 ? ? 2 ( x ? 2) 2 x 2e x 2e x ln 2 ln 3 ln n 1 1 1 1 ? 4 ? 4 ? ... ? 4 ? ( 2 ? 2 ? ... ? 2 ) 12 分 2 3 n 2e 2 3 n
(3)由(2)知 h( x) ?

10 分

又因为

1 1 1 1 1 1 ? 2 ? ... ? 2 ? ? ? ... ? 2 2 3 n 1? 2 2 ? 3 (n ? 1) n

1 1 1 1 1 1 ? (1 ? ) ? ( ? ) ? ... ? ( ? ) ? 1? ? 1 2 2 3 n ?1 n n ln 2 ln 3 ln n 1 ? 4 ? 4 ? ... ? 4 ? 14 分 2 3 n 2e
考点:1.应用导数研究函数的单调性、最值、证明不等式;2.裂项相消法;3.转化与化归思 想.


赞助商链接

山东省菏泽市郓城高级中学2017届高三上学期期中考试英...

山东省菏泽市郓城高级中学2017届高三上学期期中考试英语试题 含答案 - 2016-2017 学年度上学期高三年级期中考试 英语试题 注意事项: 1. 本试卷分第Ⅰ卷(选择题)...

山东省菏泽市郓城高级中学2017届高三上学期期中考试语...

山东省菏泽市郓城高级中学2017届高三上学期期中考试语文试题 含答案 - 2016—2017 学年度上学期 高三期中考试语文试题 (时间:150 分钟 满分:150 分 用黑色笔书写...

山东省菏泽市郓城高级中学2017届高三上学期期中考试政...

山东省菏泽市郓城高级中学2017届高三上学期期中考试政治试题 含答案_高考_高中教育_教育专区。2016-2017 学年度上学期高三期中考试 政治试题(时间:100 分钟 满分:...

山东省菏泽市郓城高级中学2017届高三上学期期中考试历...

山东省菏泽市郓城高级中学2017届高三上学期期中考试历史试卷 含答案_高考_高中教育_教育专区。绝密★启用前 2016—2017 学年度高三期中考试 历史试题 注意事项: ① ...