kl800.com省心范文网

高中数学解题基本方法大全



第一章 高中数学解题基本方法
一、 配方法
二、 换元法
三、 待定系数法
四、 定义法
五、 数学归纳法
六、 参数法
七、 反证法
八、 消去法
九、 分析与综合法
十、 特殊与一般法
十一、 类比与归纳法
十二、 观察与实验法

第二章 高中数学常用的数学思想
一、 数形结合思想
二、 分类讨论思想
三、 函数与方程思想
四、 转化(化归)思想
第三章 高考热点问题和解题策略

①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法等;

②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等;

③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、归纳和演绎等;

④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想等。

“知识”是基础,“方法”是手段,“思想”是深化,。



第一章 高中数学解题基本方法
一、 配方法
配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。
何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。
最常见的配方是进行恒等变形,使数学式子出现完全平方。
它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。
配方法使用的最基本的配方依据是二项完全平方公式(a+b) =a +2ab+b ,
可得到各种基本配方形式,如:
a +b =(a+b) -2ab=(a-b) +2ab;
a +ab+b =(a+b) -ab=(a-b) +3ab=(a+ ) +( b) ;
a +b +c +ab+bc+ca= [(a+b) +(b+c) +(c+a) ]
a +b +c =(a+b+c) -2(ab+bc+ca)=(a+b-c) -2(ab-bc-ca)=…
结合其它数学知识和性质,相应有另外的一些配方形式,如:
1+sin2α=1+2sinαcosα=(sinα+cosα) ;


二、换元法
解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。
换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,
将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。
换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。
它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。
换元的方法有:局部换元、三角换元、均值换元等。局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现。例如解不等式:4 +2 -2≥0,先变形为设2 =t(t>0),而变为熟悉的一元二次不等式求解和指数方程的问题。
三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。如求函数y= + 的值域时,易发现x∈[0,1],设x=sin α ,α∈[0, ],问题变成了熟悉的求三角函数值域。为什么会想到如此设,其中主要应该是发现值域的联系,又有去根号的需要。如变量x、y适合条件x +y =r (r>0)时,则可作三角代换x=rcosθ、y=rsinθ化为三角问题。
均值换元,如遇到x+y=S形式时,设x= +t,y= -t等等。
我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。



三、待定系数法
要确定变量间的函数关系,设出某些未知系数,然后根据所给条件来确定这些未知系数的方法叫待定系数法,其理论依据是多项式恒等,也就是利用了多项式f(x) g(x)的充要条件是:对于一个任意的a值,都有f(a) g(a);或者两个多项式各同类项的系数对应相等。
待定系数法解题的关键是依据已知,正确列出等式或方程。使用待定系数法,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程组来解决,要判断一个问题是否用待定系数法求解,主要是看所求解的数学问题是否具有某种确定的数学表达式,如果具有,就可以用待定系数法求解。例如分解因式、拆分分式、数列求和、求函数式、求复数、解析几何中求曲线方程等,这些问题都具有确定的数学表达形式,所以都可以用待定系数法求解。
使用待定系数法,它解题的基本步骤是:
第一步,确定所求问题含有待定系数的解析式;
第二步,根据恒等的条件,列出一组含待定系数的方程;
第三步,解方程组或者消去待定系数,从而使问题得到解决。
如何列出一组含待定系数的方程,主要从以下几方面着手分析:
① 利用对应系数相等列方程;
② 由恒等的概念用数值代入法列方程;
③ 利用定义本身的属性列方程;
④ 利用几何条件列方程。


四、定义法
所谓定义法,就是直接用数学定义解题。数学中的定理、公式、性质和法则等,都是由定义和公理推演出来。定义是揭示概念内涵的逻辑方法,它通过指出概念所反映的事物的本质属性来明确概念。
定义是千百次实践后的必然结果,它科学地反映和揭示了客观世界的事物的本质特点。简单地说,定义是基本概念对数学实体的高度抽象。用定义法解题,是最直接的方法,本讲让我们回到定义中去。


五、数学归纳法
归纳是一种有特殊事例导出一般原理的思维方法。归纳推理分完全归纳推理与不完全归纳推理两种。不完全归纳推理只根据一类事物中的部分对象具有的共同性质,推断该类事物全体都具有的性质,这种推理方法,在数学推理论证中是不允许的。完全归纳推理是在考察了一类事物的全部对象后归纳得出结论来。
数学归纳法是用来证明某些与自然数有关的数学命题的一种推理方法,在解数学题中有着广泛的应用。它是一个递推的数学论证方法,论证的第一步是证明命题在n=1(或n )时成立,这是递推的基础;第二步是假设在n=k时命题成立,再证明n=k+1时命题也成立,这是无限递推下去的理论依据,它判断命题的正确性能否由特殊推广到一般,实际上它使命题的正确性突破了有限,达到无限。这两个步骤密切相关,缺一不可,完成了这两步,就可以断定“对任何自然数(或n≥n 且n∈N)结论都正确”。由这两步可以看出,数学归纳法是由递推实现归纳的,属于完全归纳。
运用数学归纳法证明问题时,关键是n=k+1时命题成立的推证,此步证明要具有目标意识,注意与最终要达到的解题目标进行分析比较,以此确定和调控解题的方向,使差异逐步减小,最终实现目标完成解题。
运用数学归纳法,可以证明下列问题:与自然数n有关的恒等式、代数不等式、三角不等式、数列问题、几何问题、整除性问题等等。

六、参数法
参数法是指在解题过程中,通过适当引入一些与题目研究的数学对象发生联系的新变量(参数),以此作为媒介,再进行分析和综合,从而解决问题。直线与二次曲线的参数方程都是用参数法解题的例证。换元法也是引入参数的典型例子。
辨证唯物论肯定了事物之间的联系是无穷的,联系的方式是丰富多采的,科学的任务就是要揭示事物之间的内在联系,从而发现事物的变化规律。参数的作用就是刻画事物的变化状态,揭示变化因素之间的内在联系。参数体现了近代数学中运动与变化的思想,其观点已经渗透到中学数学的各个分支。运用参数法解题已经比较普遍。
参数法解题的关键是恰到好处地引进参数,沟通已知和未知之间的内在联系,利用参数提供的信息,顺利地解答问题。


七、反证法
反证法是属于“间接证明法”一类,是从反面的角度思考问题的证明方法,即:肯定题设而否定结论,从而导出矛盾推理而得。
反证法就是从否定命题的结论入手,并把对命题结论的否定作为推理的已知条件,进行正确的逻辑推理,使之得到与已知条件、已知公理、定理、法则或者已经证明为正确的命题等相矛,矛盾的原因是假设不成立,所以肯定了命题的结论,从而使命题获得了证明。
反证法所依据的是逻辑思维规律中的“矛盾律”和“排中律”。在同一思维过程中,两个互相矛盾的判断不能同时都为真,至少有一个是假的,这就是逻辑思维中的“矛盾律”;两个互相矛盾的判断不能同时都假,简单地说“A或者非A”,这就是逻辑思维中的“排中律”。反证法在其证明过程中,得到矛盾的判断,根据“矛盾律”,这些矛盾的判断不能同时为真,必有一假,而已知条件、已知公理、定理、法则或者已经证明为正确的命题都是真的,所以“否定的结论”必为假。再根据“排中律”,结论与“否定的结论”这一对立的互相否定的判断不能同时为假,必有一真,于是我们得到原结论必为真。所以反证法是以逻辑思维的基本规律和理论为依据的,反证法是可信的。
反证法的证题模式可以简要的概括我为“否定→推理→否定”。即从否定结论开始,经过正确无误的推理导致逻辑矛盾,达到新的否定,可以认为反证法的基本思想就是“否定之否定”。应用反证法证明的主要三步是:否定结论 → 推导出矛盾 → 结论成立。实施的具体步骤是:
第一步,反设:作出与求证结论相反的假设;
第二步,归谬:将反设作为条件,并由此通过一系列的正确推理导出矛盾;
第三步,结论:说明反设不成立,从而肯定原命题成立。
在应用反证法证题时,一定要用到“反设”进行推理,否则就不是反证法。用反证法证题时,如果欲证明的命题的方面情况只有一种,那么只要将这种情况驳倒了就可以,这种反证法又叫“归谬法”;如果结论的方面情况有多种,那么必须将所有的反面情况一一驳倒,才能推断原结论成立,这种证法又叫“穷举法”。
在数学解题中经常使用反证法,牛顿曾经说过:“反证法是数学家最精当的武器之一”。一般来讲,反证法常用来证明的题型有:命题的结论以“否定形式”、“至少”或“至多”、“唯一”、“无限”形式出现的命题;或者否定结论更明显。具体、简单的命题;或者直接证明难以下手的命题,改变其思维方向,从结论入手进行反面思考,问题可能解决得十分干脆。



第二章 高中数学常用的数学思想
一、数形结合思想方法
基本知识分三类:一类是纯粹数的知识,如实数、代数式、方程(组)、不等式(组)、函数等;
一类是关于纯粹形的知识,如平面几何、立体几何等;
一类是关于数形结合的知识,主要体现是解析几何。
数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,
可以分为两种情形:借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;
或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。
注意:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;
第三是正确确定参数的取值范围。

二、分类讨论思想方法
① 问题所涉及到的数学概念是分类进行定义的。如|a|的定义分a>0、a=0、a<0三种情况。这种分类讨论题型可以称为概念型。
② 问题中涉及到的数学定理、公式和运算性质、法则有范围或者条件限制,或者是分类给出的。如等比数列的前n项和的公式,分q=1和q≠1两种情况。这种分类讨论题型可以称为性质型。
③ 解含有参数的题目时,必须根据参数的不同取值范围进行讨论。如解不等式ax>2时分a>0、a=0和a<0三种情况讨论。这称为含参型。
另外,某些不确定的数量、不确定的图形的形状或位置、不确定的结论等,都主要通过分类讨论,保证其完整性,使之具有确定性。
进行分类讨论时,我们要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论。其中最重要的一条是“不漏不重”。
解答分类讨论问题时,我们的基本方法和步骤是:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不漏不重、分类互斥(没有重复);
再对所分类逐步进行讨论,分级进行,获取阶段性结果;最后进行归纳小结,综合得出结论。


三、函数与方程的思想方法
函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。
方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),
然后通过解方程(组)或不等式(组)来使问题获解。
一利用的性质是:f(x)、f (x)的单调性、奇偶性、周期性、最大值和最小值、图像变换等,
善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。
对所给的问题观察、分析、判断比较深入、充分、全面时,才能产生由此及彼的联系,构造出函数原型。
方程问题、不等式问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。



四、等价转化思想方法
等价转化是把未知解的问题转化到在已有知识范围内可解的问题的一种重要的思想方法。
注意转化的等价性与非等价性的不同要求,实施等价转化时确保其等价性,保证逻辑上的正确。
要遵循熟悉化、简单化、直观化、标准化的原则,比如从超越式到代数式、从无理式到有理式、从分式到整式…等


一、应用问题
求解应用题的一般步骤是(四步法):
1、读题:读懂和深刻理解,译为数学语言,找出主要关系;
2、建模:把主要关系近似化、形式化,抽象成数学问题;
3、求解:化归为常规问题,选择合适的数学方法求解;
4、评价:对结果进行验证或评估,对错误加以调节,最后将结果应用于现实,作出解释或验证。
在近几年高考中,经常涉及的数学模型,有以下一些类型:数列模型、函数模型、不等式模型、三角模型、排列组合模型等等。

二、探索性问题
类型:猜想归纳型、存在型问题、分类讨论型。
猜想归纳型问题是指在问题没有给出结论时,需要从特殊情况入手,进行猜想后证明其猜想的一般性结论。
思路是:从所给的条件出发,通过观察、试验、不完全归纳、猜想,探讨出结论,然后再利用完全归纳理论和要求对结论进行证明。其主要体现是解答数列中等与n有关数学问题。

存在型问题是指结论不确定的问题,即在数学命题中,结论常以“是否存在”的形式出现,其结果可能存在,需要找出来,可能不存在,则需要说明理由。
可以先假设结论不存在,若推论无矛盾,则结论确定存在;若推证出矛盾,则结论不存在。代数、三角、几何中,都可以出现此种探讨“是否存在”类型的问题。

分类讨论型问题是指条件或者结论不确定时,把所有的情况进行分类讨论后,找出满足条件的条件或结论。此种题型常见于含有参数的问题,或者情况多种的问题。
通常需要综合运用归纳与猜想、函数与方程、数形结合、分类讨论、等价转化与非等价转化等数学思想方法才能得到解决




四、填空题解答策略
一、直接推演法:
二、特值代入法:
三、图解法:

最新高中数学解题方法大全.doc

最新高中数学解题方法大全 - 高中数学解题方法大全 2 目 录 2 3 3 7

高中数学解题基本方法--参数法 大全.doc

高中数学解题基本方法--参数法 大全_高三数学_数学_高中教育_教育专区。高中数学解题基本方法--参数法 大全 高中数学解题基本方法--参数法 高中数学解题基本方法--...

高中数学解题方法及解析大全_图文.doc

高中数学解题方法及解析大全_数学_高中教育_教育专区。高中数学解题方法及解析大全,高中数学20个模型解法,高中数学解题方法大全,高中数学九大解题技巧,高中数学321种...

高中数学解题方法(大全).doc

高中数学解题方法(大全) - 高中数学解题方法 (大全) 2 目 录 2 3 3

高中数学解题方法(大全).pdf

高中数学解题方法(大全)_数学_高中教育_教育专区 暂无评价|0人阅读|0次下载|举报文档高中数学解题方法(大全)_数学_高中教育_教育专区。 ...

高中数学解题方法与技巧大全.pdf

高中数学解题方法与技巧大全 - 高中数学解题方法与技巧大全 数学思维的变通性 一

高中数学解题方法(大全)_图文.pdf

高中数学解题方法(大全) - ...... 高中数学解题方法(大全)_文学研究_人文社科_专业资料。 您的评论 发布评论 用户评价 高中数学解题方法(大全),如何下载 2018-...

高中数学知识点公式解题技巧大全集【强烈推荐】_图文.ppt

大全集|高中数学知识点公式解题技巧大全集【强烈推荐】_数学_高中教育_教育专区。...作二面角的平面角的常用方法①点P在棱上 定义法 ∠APB ②点P在一个半平面...

数学解题方法大全.doc

数学解题方法大全 - 在小学数学解题方法中,运用概念、判断、推理来反映现实的思维

高中数学解题方法与技巧大全.pdf

高中数学解题方法与技巧大全 - 高中数学解题方法与技巧大全 数学思维的变通性 一

高中数学解题思想 方法大全.doc

高中数学解题思想 方法大全 - 目 录 2 3 3 9 15 22 23 23

高中数学解题基本方法配方法.doc

高中数学解题基本方法配方法 - 高中数学解题基本方法 一、 配方法 配方法是

高中数学 全解题基本方法.doc

高中数学解题基本方法 - 高中数学解题基本方法 配方法是对数学式子进行一种

数学(高考)解题思想方法大全.txt

数学(高考)解题思想方法大全 - 高中数学的经典,掌握方法,水到渠成!!!... 数学(高考)解题思想方法大全。高中数学的...2 第一章 高中数学解题基本方法 ……… 3...

高中数学常用的解题方法与技巧1_图文.ppt

高中数学常用解题方法与技巧1 - 高中数学联赛常用解题方法与技巧(上篇) 引言 构造法 反证法 数学归纳法 课外思考一 课外思考二课外思考三 高中数学联赛常用的...

高中理科数学数列知识点和解题方法大全.doc

高中理科数学数列知识点和解题方法大全 - 一、高中数列知识点总结 2 1. 等差数列的定义与性质 2 2. 等比数列的定义与性质 3 二 解题方法 4 1 求数列通项...

史上最全的高中数学解题基本方法.doc

史上最全的高中数学解题基本方法 - 选校网 www.xuanxiao.com 高考频道 专业大全 历年分数线 上万张大学图片 大学视频 院校库 选校网 www.xuanxiao.com 高考...

数学解题方法_高中数学公式大全.doc

数学解题方法_高中数学公式大全 - 数学公式 1 集合 {a1 , a2 , n

数学巧学巧解大全.doc

巧解大全》目录第一部分 高中数学活题巧解方法总论...把握基本特点,稳步提高解题能力 三十一、巧记圆锥...

高考数学易错题解题方法大全1.doc

高考数学易错题解题方法大全1 - 2010 高考数学易错题解题方法大全(1) 一