kl800.com省心范文网

高二数学(离散型随机变量的分布列 2)


2.1.2 离散型随机变量的分布列

第二课时

复习回顾

1.离散型随机变量X 1.离散型随机变量X的分布列是什么 离散型随机变量 概念? 概念? 若离散型随机变量X 若离散型随机变量X的所有可能取值为 x1,x2,…,xi,…, xn,X取每一个值 xi(i=1,2,…,n)的概率P(X=xi)=pi, P(X= = )的概率P(X 则下列表格称为X的分布列. 则下列表格称为X的分布列.

X x1 x2 … xi … xn P p1 p2 … pi … pn

复习回顾

2.离散型随机变量X 2.离散型随机变量X的分布列有哪 离散型随机变量 几种表示方法?有哪两条基本性质? 几种表示方法?有哪两条基本性质? 表示方法: 表示方法: 解析法,列表法,图象法. 解析法,列表法,图象法. 基本性质: 基本性质: ≥0, (1)pi≥0,i=1,2,…,n; ≥0 = ; (2)p1+p2+…+pn=1.

探求新知

篮球比赛中每次罚球命中得1 篮球比赛中每次罚球命中得1分, 不中得0 不中得0分.若姚明罚球命中的概率为 0.95, 0.95,则其罚球命中的分布列用列表 法怎样表示? 法怎样表示? X P 0 1 0.05 0.95

探求新知

在抛掷一枚图钉的随机试验中, 在抛掷一枚图钉的随机试验中, 令
ì1 针 向 ; 尖 上 ? , ? X=í ,若针尖向上的概率为 ? 0, 尖 下 针 向 . ? ? ?

则随机变量X p,则随机变量X的分布列用列表法怎样 表示? 表示? X P 0 1 -p 1

p

形成结论

1、两点分布列? 两点分布列? 随机试验只有两个可能结果. 随机试验只有两个可能结果. 如果随机变量X 如果随机变量X的分布列为两点分 布列,则称X服从两点分布 两点分布, 布列,则称X服从两点分布,在两点分 布中随机变量的值域是什么? 布中随机变量的值域是什么?分布列 P(X=2)=0.4,P(X=5)=0.6是否为 P(X=2)=0.4,P(X=5)=0.6是否为 两点分布?{0, 两点分布?{0,1} 否

形成结论

两点分布又称0-1分布,或伯努 两点分布又称0 分布, 利分布,在两点分布中,X=1对应的 利分布,在两点分布中, 试验结果为“成功” =P(X= 试验结果为“成功”,p=P(X=1) 称为成功概率,能否将分布列P(X=2) 称为成功概率,能否将分布列P(X= 成功概率 P(X =0.4,P(X=5)=0.6变换为两点分 0.4,P(X=5)=0.6变换为两点分 布? ì 0, X=2 ? ? 服从两点分布. 令Y = í ,则Y服从两点分布. ? 1,X=5 ? ?

探求新知

某100件产品中有5件次品,从中 100件产品中有5件次品, 件产品中有 任取3 试求: 任取3件,试求: 取到次品数X的分布列; (1)取到次品数X的分布列; 至少取到1件次品的概率. (2)至少取到1件次品的概率.

形成结论

一般地,设N件产品中有M件次品, 一般地, 件产品中有M件次品, 从中任取n件产品所含的次品数为 件产品所含的次品数为X 从中任取 件产品所含的次品数为X, 其中M ∈N*, ≤N- 其中M ,N,n∈N*,M≤N,n≤N-M, ∈N* M≤N, ≤N 则随机变量X的值域是什么?X的分布 则随机变量X的值域是什么? 列用解析法怎样表示? 列用解析法怎样表示?
C C P(X = k) = C
k M n- k N- M n N

k=0,1,2,…,m, = , , 其中m= 其中 =min{M,n}. M

形成结论

2、上述分布列称为超几何分布 上述分布列称为超几何分布 如果随机变量X 列,如果随机变量X的分布列是超几 何分布列,则称X服从超几何分布. 何分布列,则称X服从超几何分布.

理论迁移

已知随机变量ξ服从两点分布, 例1 已知随机变量ξ服从两点分布, 其分布列如下, 的成功概率. 其分布列如下,求ξ的成功概率. ξ P 0 1 9c2-c 3-8c 1 P(X=1)= P(X=1)= 3

理论迁移

例2 在某年级的联欢会上设计了一个 摸奖游戏, 摸奖游戏,在一个口袋中装有大小相同 10个红球和20个白球 个红球和20个白球, 的10个红球和20个白球,一次从中摸出 个球,至少摸到3个红球就中奖, 5个球,至少摸到3个红球就中奖,求中 奖的概率. 奖的概率. P{X≥3}=P{X=3}+P{X=4}+P{X= P{X≥3}=P{X=3}+P{X=4}+P{X=5} ≈0.191

理论迁移

若将这个游戏的中奖概率控制在55% 若将这个游戏的中奖概率控制在55% 左右,应如何设计中奖规则? 左右,应如何设计中奖规则? 游戏规则可定为至少摸到2 游戏规则可定为至少摸到2个红球 就中奖. 就中奖.

课堂小结

1.两点分布中随机变量只有0 1.两点分布中随机变量只有0和1 两点分布中随机变量只有 两个不同取值. 两个不同取值. 2.在有多个结果的随机试验中, 2.在有多个结果的随机试验中, 在有多个结果的随机试验中 如果我们只关心一个随机事件是否发 可以将它化归为两点分布来研究. 生,可以将它化归为两点分布来研究.

课堂小结

3.超几何分布是一种常见的概率 3.超几何分布是一种常见的概率 分布模型,它有统一的概率计算公式, 分布模型,它有统一的概率计算公式, 其分布列用解析法表示较简单. 其分布列用解析法表示较简单.

布置作业

习题2.1A 2.1A组 P50习题2.1A组:6 习题2.1A 2.1A组 P49习题2.1A组:1,2


赞助商链接

高中数学选修二 北师大版 离散型随机变量的分布列 第3...

高中数学选修二 北师大版 离散型随机变量的分布列 第3课时 教案_高二数学_数学_高中教育_教育专区。高中数学选修二 北师大版 教案 ...

第二章 1离散型随机变量及其分布列(二)

第二章 1离散型随机变量及其分布列(二)_高二数学_数学_高中教育_教育专区。§1 离散型随机变量及其分布列(二) [学习目标] 1.在对具体问题的分析中,理解取...

高二数学下册《离散型随机变量及其分布列(一)》精品导学案

高二数学下册《离散型随机变量及其分布列(一)》精品导学案 - 离散型随机变量及其分布列(一) 班级: 姓名: 学习目标 1.理解随机变量的定义; 2.掌握离散型随机...

离散型随机变量分布列及二项分布

离散型随机变量分布列及二项分布_高二数学_数学_高中教育_教育专区。一、选择题 (每小题 5 分,共 40 分) A.ab-a-b+1 ? k) ? 5? k ?1 2, 3, ...

离散型随机变量的分布列教学设计

离散型随机变量的分布列教学设计 - 高中数学说课教案数学选修 2-3 第二章第 2 节 课题:离散型随机变量及分布列(一) 说课教师:四川省旺苍中学曾林贤 教材:...

高二数学离散型随机变量的分布列综合测试题2

高二数学离散型随机变量的分布列综合测试题2 - 选修 2-3 一、选择题 2.1.2.第二课时 离散型随机变量的分布列 2 1.下列表中可以作为离散型随机变量的分布列...

北师大版高中数学选修2-3《离散型随机变量及其分布列》...

北师大版高中数学选修2-3《离散型随机变量及其分布列》优质教案2【精品】 - (此文档为 word 格式,下载后可以任意修改,直接打印使用!) (此文档为 word 格式,...

《2.1.2离散型随机变量的分布列》教学案2

《2.1.2离散型随机变量的分布列》教学案2_高三数学_数学_高中教育_教育专区。《2.1.2离散型随机变量的分布列》教学案 学习目标: 1、知道离散性随机变量的...

《离散型随机变量的分布列》教案3

离散型随机变量的分布列》教案3 - 《离散型随机变量的分布列》教案 3 教学内容: 人教版数学高中选修 2—3《离散型随机变量的分布列》 知识与技能: 会求出...

最新人教版高中数学选修2-3《离散型随机变量的分布列》...

最新人教版高中数学选修2-3《离散型随机变量的分布列》知识梳理_高三数学_数学_高中教育_教育专区。2.1.2 离散型随机变量的分布列 学习目标 1.能知道取有限个...