kl800.com省心范文网

河北省冀州中学2016-2017学年高二下学期期末考试数学(理)试题B卷 Word版含答案


试卷类型:B 卷 河北冀州中学 2016-2017 学年度下学期期末 高二年级理科数学试题
( 考试时间:120 分钟 分值:150 分)

第Ⅰ卷(选择题

共 52 分)

一、选择题:本大题共 13 小题,每小题 4 分,共 52 分。在每小题给出的四个 选项中,只有一项是符合题目要求的。 1.下列说法正确的是( ) A. ?x , y ? R ,若 x ? y ? 0 ,则 x ? 1 且 y ? ?1 B. 命 题 “ ?x ? R , 使 得 x 2 ? 2 x ? 3? 0 ” 的 否 定 是 “ ?x ? R , 都 有 2 x ? 2x ? 3 ? 0 ” 1 C. a ? R ,“ ? 1 ”是“ a ? 1 ”的必要不充分条件 a D. “若 am2 ? bm2 ,则 a ? b ”的逆命题为真命题 2.设 ?1 ? i ?? x ? yi ? ? 2 ,其中 i 为虚数单位, x , y 是实数,则 2x ? yi ? ( ) A. 1 B 5 C. 2 D. 3 3.设随机变量 ? 服从正态分布 N ? 0,1? ,若 P(? ? 1) ? p ,则 P(?1 ? ? ? 0) ? (
1 1 ?p B. ? p C. 1 ? p D. 1 ? 2 p 2 2 4.已知 m , n 是两条不同的直线, ? , ? 是两个不同的平面,给出下列四 个命题,错误的命题是( ) A. 若 m / /? , m / / ? , ? ? ? ? n ,则 m / / n B. 若 ? ? ? , m ? ? , n ? ? ,则 m ? n C. 若 ? / / ? , m / /? ,则 m / / ? D. 若 ? ? ? , ? ? ? , ? ? ? ? m ,则 m ? ?

)

A.

5.设等差数列

满足 ,且 , 项和,则数列 的最大项为 A. S23 B. S 24 C. S25 D. S 26 6.下图是一个算法流程图,则输出的 x 值为 A. 95 B. 23 C. 11 D. 47
n

为其前

a ? ? 7.二项式 ? 2 x ? ? 的展开式中所有二项式系数和为 64, x? ? 则展开式中的常数项为 60 ,则 a 的值为 ( ) A. ?1 B. 2 C. 1 D. -1

8 .设函数 f ? x ? ? x ? lnx ? ax ? ( a ? R ) 在区间 ? 0, 2? 上有两个极值点,则 a 的取 值范围是(
? 1 ? )A. ? ? , 0 ? ? 2 ? ? ln2 ? 1 ? B. ? 0, ? 4 ? ? ? ln2 ? 1 1 ? C. ? , ? 2? ? 4 ?1 ? D. ? ,1? ?2 ?

x2 y 2 ? ? 1 ( a ? 0 , b ? 0 )的左、右焦点分别是 F1 , F2 , a 2 b2 以 F1F2 为直径的圆与双曲线 M 相交于点 P ,且 PF1 ? 16 , PF2 ? 12 ,则双曲

9.若双曲线 M :

5 4 5 B. 5 C. D. 4 3 3 10.如图,网格纸上小正方形的边长为 1 ,粗实线及粗虚线画出 的是某四棱锥的三视图,则该四棱锥各个侧面中,最大的侧面面 B. 3 C. 5 D. 4 积为( )A. 2

线 M 的离心率为(

)A.

11 . 已 知 函 数 f ? x ? ? 2cos2 2x ? 2 . 给 出 下 列 命 题 :
? 3? ? ① ?? ? R, f ? x ? ? ? 为 奇 函 数 ; ② ?? ? ? 0, ? , ? 4 ? f ? x ? ? f ? x ? 2? ? 对 x ? R 恒 成 立 ; ③ ?x1 , x2 ? R , 若 f ? x1 ? ? f ? x2 ? ? 2 , 则

? ; ④ ?x1 , x2 ? R , 若 f ? x1 ? ? f ? x2 ? ? 0 , 则 4 x1 ? x2 ? k? ? k ? Z ? .其中的真命题有( )

x1 ? x2 的 最 小 值 为
B. ②③

A. ①②

C. ③④

D. ①④ 的左右焦点分别为 ,过点 且垂直于 轴的 两点,若 的周

12.已知双曲线

直线与该双曲线的左支交于 两点, 分别交 轴于 长为 12,则 取得最大值时该双曲线的离心率为( ) A. B. C. , 的取值范围是( B. C. ) D. D. .方程

13.已知函数 数解,则 A.

有六个不同的实

第Ⅱ卷(非选择题,共 98 分)
二、填空题:本大题共 4 小题,每小题 4 分,共 16 分。把答案直接答在答题纸 上。 14.从甲、乙等 8 名志愿者中选 5 人参加周一到周五的社区服务,每天安排一 人,每人只参加一天.若要求甲、乙两人至少选一人参加,且当甲、乙两人都 参加时,他们参加社区服务的日期不相邻,那么不同的安排种数为 __________.(用数字作答) 0? x? 3 15.点 M ? x, y ? 是不等式组 { y ? 3 表示的平面区域 ? 内的一动点,且不等式
x ? 3y 2 x ? y ? m ? 0 恒成立,则 m 的取值范围是__________. 16 .已知在 中, , ,如图,动点 是在以 点 为 圆 心, 为半径的扇形内运动 ( 含边界 ) 且 ;设

,则 的取值范围__________. 17.设 A ? n ? 表示正整数 n 的个位数, an ? A ? n 2 ? ? A ? n ? , A 为数列 ?an ? 的前 202 项和,函数 f
Ax ? 1 ? ? x e ? e? 1 , 若 函 数 g ? x? 满 足 f ? g ? x? ? ?1 , 且 Ax ? ? ? bn ? g? n n N* ? ,则数列 ?bn ? 的前 n 项和为__________. ?? ?

? x? ?

三、解答题:本大题共 7 小题,共 82 分.解答应写出文字说明,证明过程或演 ?? ? 算步骤。18.已知函数 f ? x ? ? sin ? 2 x ? ? ? cos 2 x . 6? ? ? ? 2? ? (I)求 f ? x ? 的最小正周期及 x ? ? , ? 时 f ? x ? 的值域; ?12 3 ? (Ⅱ) 在 △ABC 中 , 角 A 、 B 、 C 所 对 的 边 为 a , b , c , 且 角 C 为 锐 角 ,

?? 3 1 ? ? ,求 a,b 的值. S?ABC ? 3 ,c=2, f ? C ? ? ? 4? 4 2 ?
? 1 1? an n ? N * .(1)求证: ? ? ? 是 an ? 3 ? an 2 ? n 等比数列,并求 ?an ? 的通项公式 an ;(2)数列 ?bn ? 满足 bn ? ? 3n ? 1? ? n ? an ,求数 2 列 ?bn ? 的前 n 项和为 Tn .

19.已知数列 ?an ? 中, a1 ? 1 , an ?1 ?

?

?

20.如图所示,该几何体是由一个直三棱柱 ADE ? BCF 和一个正 四棱锥 P ? ABCD 组合而成, AD ? AF , AE ? AD ? 2 . (Ⅰ)证明:平面 PAD ? 平面 ABFE ; (Ⅱ)求正四棱锥 P ? ABCD 的高 h ,使得二面角 C ? AF ? P 的余弦 2 2 值是 . 3 21.高考改革新方案,不分文理科,高考成绩实行“3+3”的构成模式,第一个 “3”是语文、数学、外语,每门满分 150 分,第二个“3”由考生在思想政 治、历史、地理、物理、化学、生物 6 个科目中自主选择其中 3 个科目参加等 级性考试,每门满分 100 分,高考录取成绩卷面总分满分 750 分.为了调查学 生对物理、化学、生物的选考情况,“将 A 市某一届学生在物理、化学、生物 三个科目中至少选考一科的学生”记作学生群体 B,从学生群体 B 中随机抽取 了 50 名学生进行调查,他们选考物理,化学,生物的科目数及人数统计表如 下: 选考物理、化学、生物的科目数 人数 1 5 2 25 3 20

(Ⅰ)从所调查的 50 名学生中任选 2 名,求他们选考物理、化学、生物科目数量

不相等的概率;(Ⅱ)从所调查的 50 名学生中任选 2 名,记 X 表示这 2 名学生选 考物理、化学、生物的科目数量之差的绝对值,求随机变量 X 的分布列和数学 期望; (Ⅲ)将频率视为概率,现从学生群体 B 中随机抽取 4 名学生,记其中恰好选考 物理、化学、生物中的两科目的学生数记作 Y,求事件“ Y ? 2 ”的概率. 22.如图,椭圆 E 的左右顶点分别为 A、B,左右焦点分别为 F1 、 F2 , AB ? 4, F1F2 ? 2 3 ,直线 y ? kx ? m( k ? 0) 交椭圆于

C 、 D 两点,与线段 F1F2 及椭圆短轴分别交于 M 、N 两点
( M 、N 不重合),且 CM ? DN . (Ⅰ)求椭圆 E 的离心率; (Ⅱ)若 m ? 0 ,设直线 AD、BC 的斜率分别为 k1、k2 ,求 23.已知函数 f ? x ? ? ln ? x ? 1? ? ax2 , a ? 0 . (1)讨论函数 f ? x ? 的单调性; (2)若函数 f ? x ? 在区间 ? ?1,0? 有唯一零点 x0 ,证明: e?2 ? x0 ? 1 ? e?1 . 1 x? t 2 24 .已知直线 l 的参数方程为 { (t 为参数 ) ,曲线 C 的参数方程为 3 y? t 2 x ? 1 ? 2cos? { ( ? 为参数), 以坐标原点为极点,x 轴的正半轴为极轴建立极 y ? 2 3 ? 2 sin?
2? ? ? 坐标系,点 P 的极坐标为 ? 2 3, ?. 3 ? ? (Ⅰ)求直线 l 以及曲线 C 的极坐标方程; (Ⅱ)设直线 l 与曲线 C 交于 A,B 两点,求△PAB 的面积. k1 的取值范围. k2

河北冀州中学 2016-2017 学年度下学期期末 高二年级理科数学试题答案
A 卷:BDCDB BDDDB CCD B 卷:CBACC DACBC BAC 14.5040 15. m ? 1 ? 2 3 16. 17. 3 ?
2n ? 3 ?n 2n

18. (1)? f ? x ? ?

? 5 3 ? 1? 3 1 ? π 4π ? sin2 x ? ?T ? π ? 2 x ? ? , ? ? f ? x ? ? ? ? , ? 2 ? 2 2 ?6 3 ? ? 4

π? 1 π ? (2)? sin ? 2C ? ? ? ? C ? ? S ? 3 ? ab ? 4 3 2? 2 6 ?

a?2 a?2 3 ? c2 ? a 2 ? b2 ? ab ? a 2 ? b2 ? 16 解得 { 或{ b?2 3 b?2 a ?3 3 a 1 19. (1)证明:由 an?1 ? n ? n ? N *? ,得 ? n ? ?1, an ?1 an an an ? 3 ? ? 1 1? ? 1 1? ? 1 1? 3 1 1 ? ? 3 ? ? ? 所以数列 ? ? ? 是以 3 为公比,以 ? ? ? ? an ?1 2 ? a1 2 ? 2 ? an 2 ? ? an 2 ? 1 1 3 2 为首项的等比数列,从而 ? ? ? 3n?1 ? an ? n ; an 2 2 3 ?1 n 1 1 1 1 1 (2) bn ? n ?1 Tn ? 1? 0 ? 2 ? 1 ? 3 ? 2 ? ? ? ? n ? 1? ? n ?2 ? n ? n ?1 2 2 2 2 2 2 Tn 1 1 1 1 ? 1? 1 ? 2 ? 2 ? ? ? ? n ? 1? ? n ?1 ? n ? n , 两式相减 2 2 2 2 2 T 1 1 1 1 1 n?2 n?2 得: n ? 0 ? 1 ? 2 ? ? ? n ?1 ? n ? n ? 2 ? n ? Tn ? 4 ? n ?1 2 2 2 2 2 2 2 2 ADE ? BCF AB ? ADE 20. (Ⅰ)证明:正三棱柱 中, 平面 , 所以 AB ? AD ,又 AD ? AF , AB ? AF ? A , 所以 AD ? 平面 ABFE , AD ? 平面 PAD , 所以平面 PAD ? 平面 ABFE . (Ⅱ)由(Ⅰ)知 AD ? 平面 ABFE ,以 A 为原点, AB , AE , AD 方向为 x , y , z 轴 建 立空 间直 角坐 标 系 A ? xyz , 设正 四棱 锥 P ? ABCD 的 高 为 h ,
AE ? AD ? 2 , 则 A? 0 , 0 ?, , 0 F ? 2, 2,0? , C ? 2,0,2? , P ?1, ?h,1? , ??? ? ???? ??? ? AF ? ? 2, 2,0 ? , AC ? ? 2,0, 2 ? , AP ? ?1, ?h,1? . 设 平 面 ACF 的 一 个 法 向 量 ? ? ??? m ? AF ? 2 x1 ? 2 y1 ? 0, ? m ? ? x1 , y1, z 1? ,则 { ? ???? m ? AC ? 2 x1 ? 2 z1 ? 0, ? 取 x1 ? 1 ,则 y1 ? z1 ? ?1 ,所以 m ? ?1, ?1, ?1? . ? ? ??? n ? AF ? 2 x2 ? 2 y2 ? 0, ? 设平面 AFP 的一个法向量 n ? ? x2 , y2 , z2 ? ,则 { ? ??? 取 x2 ? 1 , ? n ? AP ? x2 ? hy2 ? z2 ? 0, ? 则 y2 ? ?1 , z2 ? ?1 ? h ,所以 n ? ?1, ?1,? 1? h? .二面角 C ? AF ? P 的余弦值是

? ? ? ? m?n 1?1?1?1 2 2 ? 所以 cos m, n ? ? ? ? ,解得 h ? 1 . 2 3 m?n 3 2 ? ? h ? 1?
21. (Ⅰ)记“所选取的 2 名学生选考物理、化学、生物科目数量相等”为事件 2 2 C 2 ? C25 ? C20 20 A 则 P ? A? ? 5 ? 所以他们选考物理、化学、生物科目数量不相等 2 C50 49 29 的概率为 1 ? P ? A ? ? 49 (Ⅱ)由题意可知 X 的可能取值分别为 0,1,2

2 2 , 3

P ? X ? 0? ? P ? X ? 2? ?

2 2 C52 ? C25 ? C20 20 , ? 2 C50 49

P ? X ? 1? ?

1 1 1 1 C5 C25 ? C20 C25 25 ? 2 C50 49

1 1 C5 C20 4 ? 2 C50 49 从而 X 的分布列为

X P

0
20 49

1
25 49

2
4 49

20 25 4 33 ? 1? ? 2 ? ? 49 49 49 49 (Ⅲ)所调查的 50 名学生中物理、化学、生物选考两科目的学生有 25 名相应的 25 1 ? 1? ? ,所以 Y ? B ? 4, ? 所以事件“ Y ? 2 ”的概率为 概率为 P ? 50 2 ? 2? E ? X ? ? 0?

?1? P ?Y ? 2 ? ? C ? ? ?2?
2 4

2

? 1? 3?1? ?1 ? ? ? C4 ? ? ? 2? ? 2?

2

3

11 ? 1? 4?1? ?1 ? ? ? C4 ? ? ? ? 2? ? 2 ? 16
x2 ? y2 ? 1 , 4

4

22 . (Ⅰ)由 AB ? 4, F1F2 ? 2 3 ,可知 a ? 2, c ? 3 即椭圆方程为 离心率为 e ?
3 ; 2

? m ? (Ⅱ)设 D ? x1, y1 ? , C ? x2 , y2 ? 易知 A ? ?2,0 ? , B ? 2,0 ? , N ? 0, m ? , M ? ? ,0 ? ? k ? y ? kx ? m 由{ 2 消去 y 整理得: ?1 ? 4k 2 ? x 2 ? 8kmx ? 4m 2 ? 4 ? 0 2 x ? 4y ? 4

?8km 4m 2 ? 4 , x x ? 1 2 1 ? 4k 2 1 ? 4k 2 ???? ? ???? m ?8km m 1 ? ? ,解得 k ? 且 CM ? DN 即 CM ? ND 可知 x1 ? x2 ? ? ,即 2 k 1 ? 4k k 2 2 4 ? x1 2 2 2 2 2 x ? 2 ? ? 2 y x ? 2 2 ? x1 ?? 2 ? x2 ? 4 ? 2 ? x1 ? x2 ? ? x1 x2 ? m ? 1 ? ? k1 ? ? ? 1 ? 2 4 ? ? ? ?? ? ? ? 2 ? 2 2 4 ? x2 2 2 ? x1 ?? 2 ? x2 ? 4 ? 2 ? x1 ? x2 ? ? x1 x2 ? m ? 1 ? ? y2 ? x1 ? 2 ? ? k2 ? ? x1 ? 2? 4

由 ?? 0 ? 4k 2 ? m2 ? 1 ? 0即m2 ? 4k 2 ? 1 , x1 ? x2 ?

? 3? 2 由题知,点 M、F1 的横坐标 xM ? xF1 ,有 ?2m ? ? 3 易知 m ? ? ? 0, 2 ? 满足 m ? 2 ? ? k k m ?1 2 即 1 ?? ,则 1 ? 1, 7 ? 4 3 ? ? ?1 ? ? k2 m ?1 1? m k2

?

23. 解:(Ⅰ) f ' ? x ? ?

? ? 4a2 ? 8a ? 4a ? a ? 2? ,

1 2ax2 ? 2ax ? 1 2 , x ? ?1 ,令 g ? x? ? 2 ax ? 2 ax? 1, ? 2ax ? x ?1 x ?1

若 ? ? 0 ,即 0 ? a ? 2 ,则 g ? x ? ? 0 ,当 x ? ? ?1, ??? 时, f ' ? x ? ? 0 , f ? x ? 单调递增,

若 ? ? 0 ,即 a ? 2 ,则 g ? x ? ? 0 ,仅当 x ? ? 时,等号成立,当 x ? ? ?1, ??? 时,
f ' ? x ? ? 0 , f ? x ? 单调递增.
?a ? a ? a ? 2 ? 2a ?a ? a ? a ? 2 ? 2a

1 2

若 ? ? 0 ,即 a ? 2 ,则 g ? x ? 有两个零点 x1 ?

, x2 ?

,由

1 ? 1? g ? ?1? ? g ? 0? ? 1 ? 0 , g ? ? ? ? 0 得 ?1 ? x1 ? ? ? x2 ? 0 , 2 ? 2?

当 x ? ? ?1, x1 ? 时, g ? x ? ? 0 , f ' ? x ? ? 0 , f ? x ? 单调递增; 当 x ? ? x1 , x2 ? 时, g ? x ? ? 0 , f ' ? x ? ? 0 , f ? x ? 单调递减; 当 x ? ? x2 , ?? ? 时, g ? x ? ? 0 , f ' ? x ? ? 0 , f ? x ? 单调递增. 综上所述, 当 0 ? a ? 2 时, f ? x ? 在 ? ?1, ??? 上单调递增; 当 a ? 2 时 , f ? x ? 在 ? ?1,
? ? ? ? ?a ? a ? a ? 2 ? ? ?a ? a ? a ? 2 ? ? ?和? , ?? ? 上 单 调 递 增 , 在 ? ? ? 2a 2a ? ? ?

? ?a ? a ? a ? 2 ? ?a ? a ? a ? 2 ? ? ? ? 上单调递减. , ? ? 2a 2a ? ?

(Ⅱ)由(1)及 f ? 0? ? 0 可知:仅当极大值等于零,即 f ? x1 ? ? 0 时,符合要求. 此时, x1 就是函数 f ? x ? 在区间 ? ?1,0? 的唯一零点 x0 .
2 所以 2ax0 ? 2ax0 ? 1 ? 0 ,

从而有 a ? ?

1 , 2 x0 ? x0 ? 1? x0 ?0, 2 ? x0 ? 1?

2 又因为 f ? x0 ? ? ln ? x0 ? 1? ? ax0 ?0,

所以 ln ? x0 ? 1? ?

令 x0 ? 1 ? t ,则 ln t ? 设 h ?t ? ? ln t ?

1 1 2t ? 1 , ? ,则 h ' ? t ? ? 2t 2 2t 2 1 再由(1)知: 0 ? t ? , h ' ?t ? ? 0 , h ? t ? 单调递减, 2 2 e ?5 e?3 又因为 h ? e?2 ? ? ? 0 ,所以 e?2 ? t ? e?1 ,即 e?2 ? x0 ? 1 ? e?1 . ? 0 , h ? e?1 ? ? 2 2

t ?1 ? 0, 2t

1 x? t ? 2 24. (Ⅰ)由 { 消去 t 得到 y ? 3x ,则 ? sin? ? 3?cos? ,∴ ? ? , 3 3 y? t 2 2 ? 2 所以直线 l 的极坐标方程为 ? ? ( ? ? R ) 曲线 C : ? x ? 1? ? y ? 2 3 ? 4,则 3

?

?

? ?cos? ?1?

2

? ? sin ? ?2 3

?

?

2

?4 则 曲 线

C

的 极 坐 标 方 程 为

? 2 ? 2?cos? ? 4 3? sin? ? 9 ? 0

? 2 ? 2 ? cos? ? 4 3? sin? ? 9 ? 0 (Ⅱ)由 { ,得到 ? 2 ? 7 ? ? 9 ? 0 ,设其两根为 ?1 , ? ??

?2 ,

3

则 ?1 ? ?2 ? 7 , ?1?2 ? 9 ,∴ AB ? ?2 ? ?1 ?

? ?1 ? ?2 ?

2

? 4?1?2 ? 13 ,

? 2? ? ? ∵点 P 的极坐标为 ? 2 3, ? ,∴ OP ? 2 3 , ? POB ? 3 , 3 ? ? ∴ 1 3 3 13 S?PAB ? S?POB ? S?POA ? ? 2 3 ? ? AB ? 2 2 2


...高二下学期期末考试数学(理)试题B卷(word版含答案).doc

河北省冀州中学2016-2017学年高二下学期期末考试数学(理)试题B卷(word版含答案) - 试卷类型:B 卷 河北冀州中学 2016-2017 学年度下学期期末 高二年级理科数学...

...高二下学期期末考试数学(理)试题B卷 Word版含答案.doc

河北省冀州中学2016-2017学年高二下学期期末考试数学(理)试题B卷 Word版含答案_数学_高中教育_教育专区。试卷类型:B 卷 河北冀州中学 2016-2017 学年度下学期...

...2018学年高二下学期期末考试数学(理)试题B卷 Word版....doc

河北省衡水市冀州中学2017-2018学年高二下学期期末考试数学(理)试题B卷 Word版含答案_数学_高中教育_教育专区。河北冀州中学 2017-2018 学年度下学期末考试 高二...

...2018学年高二下学期期末考试数学(文)试题B卷 Word版....doc

河北省冀州中学2017-2018学年高二下学期期末考试数学()试题B卷 Word版含答案_数学_高中教育_教育专区。试卷类型:B 卷 河北冀州中学 2017-2018 学年度下学期...

...高二下学期期末考试数学(理)试题A卷 Word版含答案.doc

河北省冀州中学2016-2017学年高二下学期期末考试数学(理)试题A卷 Word版含答案...高二年级理科数学试题答案 A 卷:BDCDB BDDDB CCD B 卷:CBACC DACBC BAC ...

...2018学年高二下学期期末考试数学(理)试题B卷 Word版....doc

河北省冀州中学2017-2018学年高二下学期期末考试数学(理)试题B卷 Word版含答案_数学_高中教育_教育专区。试卷类型:B 卷 河北冀州中学 2017-2018 学年度下学期...

...高二下学期期末考试数学(文)试题A卷(word版含答案).doc

河北省冀州中学2016-2017学年高二下学期期末考试数学()试题A卷(word版含答案) - 试卷类型:A 卷 河北冀州中学 2016-2017 学年度下学期期末 高二年级文科数学...

...高一下学期期中考试数学(理)试题B卷 Word版含答案.doc

河北省冀州中学2016-2017学年高一下学期期中考试数学(理)试题B卷 Word版含答案 - 试卷类型:B 卷 河北冀州中学 2016-2017 学年度下学期期中 高一年级理科数学试题...

河北省冀州中学2016-2017学年高二下学期期中考试数学理....doc

河北省冀州中学2016-2017学年高二下学期期中考试数学理试题B卷 含答案 精品 - 试卷类型:B 卷 河北冀州中学 2016-2017 学年度下学期期中 高二年级理科数学试题 (...

...市冀州中学2017-2018学年高二下学期期末考试数学(文....doc

河北省衡水市冀州中学2017-2018学年高二下学期期末考试数学()试题B卷 Word版含答案 - 试卷类型:B 卷 河北冀州中学 2017-2018 学年度下学期期末考试 高二年级...

...学年高二下学期期末考试生物试题B卷 Word版含答案.doc

河北省冀州中学2017-2018学年高二下学期期末考试生物试题B卷 Word版含答案_理化生_高中教育_教育专区。试卷类型:B 卷 河北冀州中学 2016 年-2017 年下学期期末...

河北省冀州中学2016-2017学年高二下学期期中考试化学试....doc

河北省冀州中学2016-2017学年高二下学期期中考试化学试题B卷 Word版含答案 - 试卷类型:B 卷 河北冀州中学 20162017 学年度下学期期中考试 高二年级化学试题(...

...2017-2018学年高二下学期期末考试数学(理)试题A卷 W....doc

河北省衡水市冀州中学2017-2018学年高二下学期期末考试数学(理)试题A卷 Word版含答案_数学_高中教育_教育专区。河北冀州中学 2017-2018 学年度下学期末考试 高二...

...高一下学期期末考试数学(理)试题B卷 Word版含答案.doc

河北省冀州中学2017-2018学年高一下学期期末考试数学(理)试题B卷 Word版含答案 - 试卷类型:B 卷 河北冀州中学 2017-2018 学年度下学期期末 高一年级理科数学试题...

...2017-2018学年高二下学期期末考试数学(理)试题A卷 W....doc

河北省冀州中学2017-2018学年高二下学期期末考试数学(理)试题A卷 Word版含答案_数学_高中教育_教育专区。试卷类型:A 卷 河北冀州中学 2017-2018 学年度下学期...

河北省冀州中学2016-2017学年高二下学期期中考试数学(....doc

河北省冀州中学2016-2017学年高二下学期期中考试数学()试题A卷 Word版含答案 - 试卷类型:A 卷 河北冀州中学 2016-2017 学年度下学期期中 高二年级文科数学试题...

...2016学年高二下学期期末考试数学(理)试题A卷 Word版....doc

河北省冀州中学2015-2016学年高二下学期期末考试数学(理)试题A卷 Word版含答案_高三数学_数学_高中教育_教育专区。试卷类型:A 卷 河北冀州中学 20152016 学...

...2018学年高二下学期期末考试数学(理)试题 Word版含....doc

河北省衡水中学2017-2018学年高二下学期期末考试数学(理)试题 Word版含答案 - 2017-2018 学年下学期高二年级期末考试 理科数学试卷 第Ⅰ卷一、选择题(本大题共...

河北省冀州中学2016-2017学年高一下学期期中考试数学(....doc

河北省冀州中学2016-2017学年高一下学期期中考试数学(理)试题A卷(word版含答案) - 试卷类型:A 卷 河北冀州中学 2016-2017 学年度下学期期中 高一年级理科数学...

河北省冀州中学2016-2017学年高二下学期期中考试数学文....doc

河北省冀州中学2016-2017学年高二下学期期中考试数学试题B卷 含答案 精品 - 试卷类型:B 卷 河北冀州中学 2016-2017 学年度下学期期中 高二年级文科数学试题 (...