kl800.com省心范文网

曲边梯形的面积教学设计


§1.5.1

曲边梯形的面积教学设计 ———冯文雅

一.教学目标: 1.知识与技能 (1)知道曲边梯形的概念,通过实例了解求曲边梯形面积的过程,初步感受“以直代曲” 与逐步逼近的数学思想方法,为今后学习定积分的概念做准备. (2)理解求曲边梯形面积的具体步骤及作法: (a)分割:区间的等宽分割与各小区间的表示; (b)以直代曲:求以各小区间的长为宽,小区间左端点的函数值为长的各小矩形面积; (c)近似代替的求和:所有小矩形面积的和为所求曲边梯形面积的近似值; (d)取极限:当分割得越细,这个近似值就越接近精确值。求它的极限得曲边梯形的面积. (3)培养学生分析与综合、抽象与概括的能力,以及进行复杂运算的能力. 2.过程与方法 让学生经历求曲边梯形面积的全过程,逐步深入地理解“以直代曲”与逐步逼近的思想. 3.情态与价值 使学生经历解决问题的全过程,感受成功的乐趣,提高学生刻苦钻研数学问题的积极性. 二.教学重点、难点 重点: (1)理解定积分的“以直代曲”与“逐步逼近”的数学思想; (2)理解“四步曲”的 步骤. 难点:定积分的以直代曲与逐步逼近基本思想的形成. 三.学法与教学用具 1.学法:学生通过典型案例的探究过程,逐步体会定积分的基本思想. 2.教学用具:多媒体或投影仪,三角板. 四.教学思路 (一)创设情景,揭示课题 经苏州市人民政府授权, 苏州工业园区管理委员会批准, 苏州工业园区土地管理局将对位于 苏州工业园区,地块编号为苏园 03 号宗地国有土地使用权实行公开拍卖出让。现就有关事 项公告如下: 拍卖地块情况: 地 块 位置 面积 (平方米) 用 途 出 让 年限 绿地率 建筑 密度 容积率 起拍价(元/ 平方米 苏 园 星都街与 苏绣路



119373.68

住 宅

770

≥35%

≤30%

≤1.5

3100

苏 绣 星 都 街 路

1.我们抽象出一个曲边梯形的图形,如图 1.5-2 师:我们求过很多平面图形的面积,现在大家看一看,你会求这个图形的面积吗? 【设计意图:通过观察、比较,然后引出曲边梯形的概念】 2.师:为什么?这里的图形是由直线 x=1,y=0, x 轴与抛物线 y ? x2 所围成的特殊的平面图形, 不能直接套用公式来解决。 3.师:请大家再想一想,能用什么方法来解决吗? 教师点拨:我们考虑用简单的图形来估计它的面积. 用什么图形好呢?由于矩形面积=长×宽,最简单, 故用矩形的面积. 【师生互动,老师适时提出问题,启发学生】 师: (如图 1)用一个矩形的面积估计行吗?为什么?(误差太大了。 ) 如果利用中点分割出两个矩形, (如图 2)用它们的面积和来估计呢?误差会小一点 吗? 如利用三等分点得到三个矩形的面积和呢?(如图 3)

图2

【师生互动,学生动手作草图探索】 师生:如果要用很多的这样的矩形呢?能找出来? 误差会怎样变化?用更多一些矩形,得到的面积和是否 越来越接近准确的曲边梯形面积呢? 师生:根据这样的想法,具体的做法应该怎样? 【师生互动,教师可大致描绘做法的思路,并指出 当矩形无限增多时,其极限值即为曲边梯形面积的精确值】 师:现在我们把思路整理一下,具体的步骤是怎样?

图3

【设计意图:让学生初步感受“以曲代直”与逐步逼近的数学思想】 (二)研探新知 师生:分割-近似代替-求和-求极限德精确值。 下面我们按照这个思路来解决问题. (1)分割: 把区间 ?0,1? 作 n 等分,得到 n 个小区间:

? 1? ?1 2? ? i ?1 i ? ? n ?1 ? 0, ? , ? , ? ,?, ? , ,? ? ,1 ? ? n? ?n n? ? n n? ? ? n ? ?
其中第 i 的区间为 ? 其长度 ?x ?

? i ?1 i ? , , ? n n? ?

i i ?1 1 ? = n n n

过上述的分点作 X 轴的垂线段, 把曲边梯形分成 n 个小 曲边梯形,显然,这些小曲边梯形的面积的和

? ?S
i?

n

i

? ?S1 ? ?S2 ? ? ? ?Sn ? S 就是所求曲边梯形面积.

(2)近似代替 上述的小曲边梯形面积和不易得到, 故我们考虑用小矩形的面积去代似代替。 这些小矩形 如何作出,它们的宽与高分别是什么? 可知宽为

1 ? i ?1 ? ,高为 f ? ? (取每个小区间的左端点的函数值) n ? n ?

这样,在区间 ?

? i ?1 i ? , 上,局部的 ? n n? ?

上“以曲代直” (即用小矩形面积 ?Si' 代替 相应的小曲边梯形面积 ?Si ) ,则有

? i ?1 ? ? i ?1 ? 1 ?Si ? ?S ? f ? ? ? ?x ? ? ? ? ? n ? ? n ? n
' i

2

?i ? 1, 2,3,?, n?
(3)求和 这些小矩形的面积和能否作为曲边梯形面积的近似值。我们来求这些小矩形的面积和。 记这些小矩形面积的和为 Sn ,则

1 ?1? 1 ? i ?1 ? 1 ? n ?1 ? 1 Sn ? ? ?S ? ? ? ? ? ? 0 ? ? ? ? ? ??? ? ? ? n n ?n? n ? n ? n i ?1 i ?1 ? n ?
n ' i n

2

2

2

?

? n ? 1? n ? 2n ? 1? ? 1 ?1 ? 1 ??1 ? 1 ? 1 ?2 2 1 ? 22 ? ? ? ? n ? 1? ? ? ? ?? ? 3 ? ? n 6n 3 3 ? n ?? 2n ?
2 2 2

(注意公式: 1 ? 2 ? ? ? n ?

n ? n ? 1?? 2n ? 1? ) 6

故 S ? Sn ?

1 ? 1 ?? 1 ? ?1 ? ??1 ? ? 3 ? n ?? 2n ?

(4)取极限 当小矩形无限的增多,或近似值的极限就得到曲边梯形面积的精确值。 如何求出这个精确值呢?联想到用正多边形求圆的面积的方法, 同样, 用极限的方法求得。 从而

1 ? 1 ?? 1 ? 1 S ? lim Sn ? lim ?1 ? ??1 ? ? ? 。 n ?? 3 ? n ?? 2n ? 3 n ??
∴ 在 ?0,1? 上,由函数 y ? x 与 x 轴围成的曲边梯形的面积是
2

注:一般曲边梯形的面积求解步骤:分割 ? 近似代替 ? 求和 ? 取极限。 三.质疑答辩,排难解惑,发展思维 (1).师:我们再来整理上面解决问题的思路与具体做法。基本的思路是什么?这里的步 骤是一成不变的吗?具体做法中, 小区间的分割方法与小矩形中的高取法一定要这样的取法 吗?请大家阅读课文(P42-P47) 【设计意图:让学生弄清主要的思路与做法】 师生:这里的基本思想是: “以曲代直”与逐步逼近。在把区间分割为一些小区间后,由 于每个小曲边梯形很小,与相应的矩形的面积相差很小,故我们在局部上做近似代替,随着 小区间的无限增多,最后得到准确的结果。上面的具体做法都是在基本思想的指导下,为了 降低解题难度,简单化的做法. (2) 。让学生完成教材 P47 的练习. 四.承上启下,留下悬念 1.留下课后练习. (1).在区间 ? ?1, 2? 上等间隔地插入 n-1 个点,将它分成 n 个小区间,则每个小区间的长度 是( A ) B

1 。 3

1 n

2 n

C

3 n

D

4 n


(2).把区间 ? ?2, 2? 作 n 等分,得 n 个小区间。则第 5 个小区间是( A ? ?2 ? , ?2 ? ? n n

? ?

4

5? ?

B ? ?2 ? , ?2 ? n n? ? ?

?

16

20 ?

C ? ?2 ? , ?2 ? ? n n? ?

?

8

10 ?

D ? ?2 ? , ?2 ? ? n n? ?

?

20

24 ?

(3).把区间 ?1, 4? 作 n 等分,将它分成 n 个小区间,则对曲线 y ? f ? x ? 在区间 ?1, 4? 上来 说,从左起第 i 个区间的左端点处的函数值是

1 ? i ? 1?1 ? 1?2 ? 1 ? n ?1 ? (4) 。求和: ? ? ? ? 1? ? ? ? 1? ? ? ? 1? ? ? ? ? ? 1? = n? n ? n?n ? n?n ? ? i ?1 n ? n
n

2

2

2

2

2.布置课后作业 求曲线 y ? ? x ? 1? ? 1 与直线 x ? 0, x ? 1, y ? 0 围成的平面图形的面积。
2

答案:

4 。 3

课后练习答案:1。C;2。B;3。 f ? 1 ?

? ?

3 ? i ? 1? ? ? n ? 1?? 2n ? 1? ? ;4。 n ? 6n 2

五、板书设计 课题: 曲边梯形的面积 曲边梯形的定义: 特例: 由直线 x=1,y=0, :x 轴与抛物线 y ? x2 所围成的曲边梯形的面积. 求解过程:

小结:

教学反思 在第四周的星期三上午第二节我在高二(2)般上了一节汇报课,课题为定积分----曲边梯形的面积。由数学组的老师听课并指导。 总的说来, 我觉的这节可上的并不好, 因为这节课主要讲数学中两个重要的思想: “以 直代曲”和“逼近思想” ,而这两个思想又都是比较抽象的,学生在听的过程中好象有些跟

不上。在课件的处理上也不太好,我应该以第二个图形进行分析求曲边梯形的面积的“四步 曲” ,然后在用第一个图形来求解其面积;在用两个矩形来代替曲边梯形的面积是还要说明 为什么要竖立的方式画矩形而不是水平方向画, 这些是为了方便; 在讲习题的时候不应强调 极限,因为前面都没有学。在分割的时候求区间要注意用区间的长度。


1.5.1 曲边梯形的面积(优秀教案)_图文.doc

1.5.1 曲边梯形的面积(优秀教案) - 1.5.1 曲边梯形的面积 一、教学

曲边梯形的面积教学设计.doc

x2 所围成的曲边梯形的面积. 求解过程: 小结: 教学反思 在第四周的星期三上午第二节我在高二(2)般上了一节汇报课,课题为定积分---曲边梯形的面积。由数学...

“曲边梯形的面积”的教学设计与反思_图文.pdf

曲边梯形的面积”的教学设计与反思 - 上海 中学数 学 ? 201 2年第 9期 “ 曲边 梯形的面积"的教学设计与反思 225002 扬 ...

曲边梯形的面积教学设计.doc

曲边梯形的面积教学设计 - ?1.5.1 曲边梯形的面积 一、教学目标 1、理解

1.5.1曲边梯形的面积(优质课获奖说课稿)_图文.ppt

1.5.1曲边梯形的面积(优质课获奖说课稿) - 普通高中课程标准实验教科书(人教A版) 《数学》选修2-2 课题:曲边梯形的面积 教科书: 普通高中课程标准实验教科书...

《1.5.1 曲边梯形的面积》教案.doc

《1.5.1 曲边梯形的面积教案_高中教育_教育专区。非常不错的教案 《1.5.1 曲边梯形的面积教案教学目标】 1、知识与技能目标: 经历求曲面梯形面积的形成...

高中数学人教版选修2-2教学设计:1.5.1《曲边梯形的面积》教案_....doc

高中数学人教版选修2-2教学设计:1.5.1《曲边梯形的面积》教案_数学_高中教育_教育专区。高中数学人教版选修2-2教学设计 1.5.1 曲边梯形的面积 教学目标:通过探...

《1.5.1 曲边梯形的面积》教学案.doc

《1.5.1 曲边梯形的面积教学案 - 《1.5.1曲边梯形的面积教学案 ”逼 学习目标:通过探求曲边梯形的面积,了解定积分的实际背景,了解“以直代曲“ 近”...

高中数学第一章导数及其应用1.5.1曲边梯形的面积第1课....doc

高中数学第一章导数及其应用1.5.1曲边梯形的面积第1课时教案 - §1.5.1 曲边梯形的面积 教学目标: (第 1 课时) 理解求曲边图形面积的过程:分割、以直代曲...

高中数学 第一课时 曲边梯形的面积教案 北师大版选修2-2.doc

高中数学 第一课时 曲边梯形的面积教案 北师大版选修2-2_教学案例/设计_教学

《1.4.1 曲边梯形面积与定积分》教学案3.doc

《1.4.1 曲边梯形面积与定积分》教学案3_高二数学_数学_高中教育_教育专区。《1.4.1 曲边梯形面积与定积分》教学案 3 教学目标: 通过探求曲边梯形的面积,使...

曲边梯形的面积.doc

曲边梯形的面积 - 《曲边梯形的面积教学设计 一、教学内容解析 本节课是人教 A 版选修 2-2 第一章第五节《定积分的概念》的起始课.曲边梯形的面 积是...

人教版高中数学选修2-2《151 曲边梯形的面积》说课稿.doc

人教版高中数学选修 2-2《1.5.1 曲边梯形的面积》说课稿 一、 【教材分析】 : 分析本节课在教材中教学内容及所处的地位和前后联系、重点和难点。 1、教学...

曲边梯形的面积、定积分、微积分.doc

曲边梯形的面积、定积分、微积分_数学_高中教育_教育专区。龙文教育一对一个性化辅导教案学生 科目 数学 学校 教师 91 中学 年级 日期 高二 2016-3-26 次数 ...

曲边梯形的面积1_图文.ppt

曲边梯形的面积1 - 曲边梯形的面积 学习目标: (1)探求曲边梯形的面积; (

曲边梯形面积与定积分(二)教案.doc

曲边梯形面积与定积分(二)教案_高二数学_数学_高中教育_教育专区。曲边梯形面积与定积分(二)教案1.4.1 曲边梯形面积与定积分 【学习要求】 1.了解定积分的概念...

求曲边梯形的面积.ppt

曲边梯形的面积 - ---求曲边梯形的面积 1、阅读课本42页第一段,回答下列

《1.4.1 曲边梯形面积与定积分(2)》教学案2.doc

的性质 【教学难点】: 对定积分概念形成过程的理解 【教学过程设计】: 教学 环节 一、 复习引入: 变速运动的路程: 教学活动 曲边梯形的面积 : n n 设计意图...

1.5.1 曲边梯形的面积.doc

1.5.1 曲边梯形的面积 - 1.5.1 明目标、 知重点 积和汽车行驶的路程. 曲边梯形的面积 1.了解“以直代曲”、 “以不变代变”的思想方法.2.会求曲边...

定积分在几何上的应用教案(5).doc

定积分在几何上的应用教案(5)_高三数学_数学_高中教育_教育专区。定积分在几何...教学中,可通过对球的体积公式的推导及曲边梯形面积公式的推导作一简单的回顾, ...