kl800.com省心范文网

高中数学知识易错点梳理


高中数学知识易错点梳理
一、集合、简易逻辑、函数 集合、简易逻辑、 研究集合必须注意集合元素的特征即三性(确定,互异,无序); A={x,xy,lgxy},集合 1. 研究集合必须注意集合元素的特征即三性(确定,互异,无序); 已知集合 A={x,xy,lgxy},集合 B={0,| ,y},且 A=B,则 B={0,|x|,y},且 A=B,则 x+y=
2 研究集合,首先必须弄清代表元素,才能理解集合的意义。 M={y| ,x∈R},N={y| +1,x∈ 2. 研究集合,首先必须弄清代表元素,才能理解集合的意义。 已知集合 M={y|y=x2 ,x∈R},N={y|y=x +1,x∈R},

2 M={(x,y)| )|y=x ,x∈R},N={(x,y)| +1,x∈R}求 的区别。 求 M∩N;与集合 M={(x,y)|y=x2 ,x∈R},N={(x,y)|y=x +1,x∈R}求 M∩N 的区别。

你是否注意到“极端”情况: 3. 集合 A、B, A ∩ B = ? 时,你是否注意到“极端”情况: A = ? 或 B = ? ;求集合的子集 A ? B 时是
2 例如: 恒成立, 的取植范围, 否忘记 ? . 例如: (a ? 2 )x + 2(a ? 2 )x ? 1 < 0 对一切 x ∈ R 恒成立,求 a 的取植范围,你讨论了 a=2 的

情况了吗? 情况了吗? 其子集、 真子集、 非空子集、 2 4. 对于含有 n 个元素的有限集合 M, 其子集、 真子集、 非空子集、 非空真子集的个数依次为 2 , ? 1, 2 ? 1,
n n n

2 n ? 2. 如满足条件 {1} ? M ? {1,2,3,4} 的集合 M 共有多少个
解集合问题的基本工具是韦恩图; 名成员,每人至少会唱歌和跳舞中的一项, 5. 解集合问题的基本工具是韦恩图; 某文艺小组共有 10 名成员,每人至少会唱歌和跳舞中的一项,其中 7 人会 人会,现从中选出会唱歌和会跳舞的各一人,表演一个唱歌和一个跳舞节目, 唱歌跳舞 5 人会,现从中选出会唱歌和会跳舞的各一人,表演一个唱歌和一个跳舞节目,问有多少种不同的 选法? 选法?

, 两集合之间的关系。 6. 两集合之间的关系。 M ={x x = 2k +1, k ∈Z},N ={x x = 4k ±1 k ∈Z}
A)∩ (A∪ A)∪ (A∩B); 7. (CUA)∩( CU B) = CU(A∪B) (CUA)∪( CUB) = CU(A∩B); A I B = B ? B ? A ; 可以判断真假的语句叫做命题 命题. 8、可以判断真假的语句叫做命题. 逻辑连接词有“ 、 逻辑连接词有“或”“且”和“非”. p、q 形式的复合命题的真值表: 形式的复合命题的真值表: p q P且q P或q 真 真 假 假 9、 命题的四种形式及其相互关系 原命题 若p则q 互 互 否 否 否命题 若﹃p则﹃q 否 否 逆 互 互 为 逆 否 逆 逆命题 若q则p 互 否 逆否命题 若﹃q则﹃p 真 假 真 假 真 假 假 假 真 真 真 假

否 互 逆 原命题与逆否命题同真同假;逆命题与否命题同真同假. 原命题与逆否命题同真同假;逆命题与否命题同真同假. 10、你对映射的概念了解了吗? 中与它对应元素的唯一性, 10、你对映射的概念了解了吗?映射 f:A→B 中,A 中元素的任意性和 B 中与它对应元素的唯一性,哪几种对 应能够成映射? 应能够成映射?
1

11、函数的几个重要性质: 11、函数的几个重要性质: 2a- =f( , ,那么函数 ①如果函数 y = f ( x ) 对于一切 x ∈ R ,都有 f (a + x ) = f (a ? x ) 或 f(2a-x)=f(x) 那么函数 y = f ( x ) 的 对称. 图象关于直线 x = a 对称. 对称; ②函数 y = f ( x ) 与函数 y = f (? x ) 的图象关于直线 x = 0 对称; 对称; 函数 y = f ( x ) 与函数 y = ? f ( x ) 的图象关于直线 y = 0 对称; 的图象关于坐标原点对称. 函数 y = f ( x ) 与函数 y = ? f (? x ) 的图象关于坐标原点对称. 上是递增函数, 上也是递增函数. ③若奇函数 y = f ( x ) 在区间 (0,+∞ ) 上是递增函数,则 y = f ( x ) 在区间 (? ∞,0 ) 上也是递增函数. 上是递增函数, 上是递减函数. ④若偶函数 y = f ( x ) 在区间 (0,+∞ ) 上是递增函数,则 y = f ( x ) 在区间 (? ∞,0 ) 上是递减函数. 个单位得到的; ⑤ 函数 y = f ( x + a ) (a > 0) 的图象是把函数 y = f ( x ) 的图象沿 x 轴向左平移 a 个单位得到的 ; 函数

y = f ( x + a ) ( (a < 0) 的图象是把函数 y = f ( x ) 的图象沿 x 轴向右平移

a 个单位得到的; 个单位得到的;

函 数 y = f ( x ) +a (a > 0) 的 图 象 是 把 函 数 y = f ( x ) 助 图 象 沿 y 轴 向 上 平 移 a 个 单 位 得 到 的 ; 函 数

y = f ( x ) +a (a < 0) 的图象是把函数 y = f ( x ) 助图象沿 y 轴向下平移 a 个单位得到的. 的图象是把函数 个单位得到的.
12、求一个函数的解析式和一个函数的反函数时,你标注了该函数的定义域了吗? 12、求一个函数的解析式和一个函数的反函数时,你标注了该函数的定义域了吗? 13、求函数的定义域的常见类型记住了吗? 13、求函数的定义域的常见类型记住了吗?函数 y=
x(4 ? x) lg( x ? 3) 2

的定义域是



复 合 函 数 的 定 义 域 弄 清 了 吗 ? 函 数 f (x ) 的 定 义 域 是 [0,1], 求 f (log 0.5 x ) 的 定 义 域 . 函 数 f (x ) 的 定 义 域 是 [ a, b ], b > ?a > 0, 求函数 F ( x ) = f ( x ) + f ( ? x ) 的定义域 2 14、含参的二次函数的值域、最值要记得讨论。 14、含参的二次函数的值域、最值要记得讨论。若函数 y=asin x+2cosx-a-2(a∈R)的最小值为 m, 求 m 的表达 15、函数与其反函数之间的一个有用的结论: y=f(x)的定义域为 A,值域为 C,则 15、函数与其反函数之间的一个有用的结论:设函数 y=f(x)的定义域为 A,值域为 C,则 A,则 ①若 a∈A,则 a=f-1 [f(a)]; C,则 C,求 (p)就是令 p=f(x), x.(x∈ x),求 若 b∈C,则 b=f[f-1 (b)]; ②若 p∈C,求 f-1 (p)就是令 p=f(x),求 x.(x∈A) 即

f

?1

(a ) = b ? f (b ) = a. 互为反函数的两个函数的图象关于直线 y=x 对称, 对称,

16、互为反函数的两个函数具有相同的单调性; 上单调递增,则一定存在反函数, 16、互为反函数的两个函数具有相同的单调性;原函数 y = f ( x ) 在区间 [? a, a ] 上单调递增,则一定存在反函数, 且反函数 y = f
?1

(x ) 也单调递增;但一个函数存在反函数,此函数不一定单调. 也单调递增;但一个函数存在反函数,此函数不一定单调.

17、 判断一个函数的奇偶性时,你注意到函数的定义域是否关于原点对称这个必要非充分条件了吗? 17、 判断一个函数的奇偶性时,你注意到函数的定义域是否关于原点对称这个必要非充分条件了吗? 在公共 定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个奇函数与一个偶函数的乘积是奇函数; 定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个奇函数与一个偶函数的乘积是奇函数; 域内 18、根据定义证明函数的单调性时,规范格式是什么? 取值, 作差, 判正负.) .)可别忘了导数也是判定函数单调 18、根据定义证明函数的单调性时,规范格式是什么?(取值, 作差, 判正负.)可别忘了导数也是判定函数单调 性的一种重要方法。 性的一种重要方法。 18、 18、你知道函数 y = x +

a x

(a > 0) 的单调区间吗?(该函数在 (? ∞,? 的单调区间吗?( ?(该函数在
2

a 和

] [

a ,+∞ 上单调递增;在 ? a ,0 上单调递增;

)

[

)

上单调递减)这可是一个应用广泛的函数! 和 0, a 上单调递减)这可是一个应用广泛的函数! 19、解对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零, 19、解对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于 1)字母底 ?(真数大于零 数还需讨论呀. 数还需讨论呀. 20、对数的换底公式及它的变形,你掌握了吗?( 20、对数的换底公式及它的变形,你掌握了吗?( log a b =

(

]

log c b , log a n b n = log a b ) log c a

21、你还记得对数恒等式吗?( 21、你还记得对数恒等式吗?( a
2

log a b

= b)
2

22、 有实数解” 22、“实系数一元二次方程 ax + bx + c = 0 有实数解” 转化为 ? = b ? 4ac ≥ 0 ” 你是否注意到必须 a ≠ 0 ; “ , 若原题中没有指出是“二次”方程、函数或不等式, 当 a=0 时, 方程有解”不能转化为 ? = b ? 4ac ≥ 0 .若原题中没有指出是“二次”方程、函数或不等式,你 “方程有解”
2

是否考虑到二次项系数可能为零的情形? 是否考虑到二次项系数可能为零的情形? 三角、 二、三角、不等式 23、三角公式记住了吗?两角和与差的公式________________ ________________; 二倍角公式:_________________ 23 、 三角公式记住了吗 ? 两角和与差的公式 ________________ ; 二倍角公式 :_________________ 万能公式 ______________正切半角公式____________________;解题时本着“三看”的基本原则来进行:“看角,看函数, ______________正切半角公式____________________;解题时本着“三看”的基本原则来进行:“看角,看函数, 正切半角公式____________________ :“看角 看特征” 基本的技巧有:巧变角,公式变形使用,化切割为弦,用倍角公式将高次降次, 看特征”,基本的技巧有:巧变角,公式变形使用,化切割为弦,用倍角公式将高次降次, 24、 在解三角问题时, 你注意到正切函数、 余切函数的定义域了吗?正切函数在整个定义域内是否为单调函数? 24、 在解三角问题时, 你注意到正切函数、 余切函数的定义域了吗?正切函数在整个定义域内是否为单调函数? 你注意到正弦函数、 弦函数的有界性了吗? 你注意到正弦函数、余弦函数的有界性了吗? 25、在三角中, 等于什么吗?( 25、在三角中,你知道 1 等于什么吗?( 1 = sin x + cos x = sec x ? tan x
2 2 2 2

= tan x ? cot x = tan

π
4

= sin

π
2

= cos 0 = LL 这些统称为 1 的代换) 常数 “1”的种种代换有着广泛的应 的代换) “1”的种种代换有着广泛的应

(还有同角关系公式:商的关系,倒数关系,平方关系;诱导公试:奇变偶不变,符号看象限) 用. 还有同角关系公式:商的关系,倒数关系,平方关系;诱导公试:奇变偶不变,符号看象限) (还有同角关系公式 26 、 在 三 角 的 恒 等 变 形 中 , 要 特 别 注 意 角 的 各 种 变 换 . 如 β = (α + β ) ? α , β = (α ? β ) + α , (

α+β
2

β ? ?α ? ? = ? α ? ? ? ? ? β ? 等) 2? ?2 ? ?

27、你还记得三角化简题的要求是什么吗?项数最少、函数种类最少、分母不含三角函数、且能求出值的式子, 27、你还记得三角化简题的要求是什么吗?项数最少、函数种类最少、分母不含三角函数、且能求出值的式子, 一定要算出值来) 一定要算出值来) 28、你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特殊角. 异角化同角, ?(切割化弦 28、你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特殊角. 异角化同角,异 2 x=(1名化同名,高次化低次) 你还记得降幂公式吗? 2 ;你还记得降幂公式吗 名化同名,高次化低次) 你还记得降幂公式吗?cos x=(1+cos2x)/2;sin x=(1-cos2x)/2 ; 29、你还记得某些特殊角的三角函数值吗? 29、你还记得某些特殊角的三角函数值吗? ( sin 15° = cos 75° =

6? 2 , sin 75° = cos 15° = 4

6+ 2 5 ?1 , sin 18° = ) 4 4 1 lr ) 2

30、你还记得在弧度制下弧长公式和扇形面积公式吗? 30、你还记得在弧度制下弧长公式和扇形面积公式吗?( l = α r , S 扇形 = 31、 辅助角公式: 31、 辅助角公式: a sin x + b cos x = 由 tan θ =

a 2 + b 2 sin ( x + θ ) (其中 θ 角所在的象限由 a, b 的符号确定,θ 角的值 的符号确定,

b 确定)在求最值、化简时起着重要作用. 确定)在求最值、化简时起着重要作用. a

32、三角函数(正弦、余弦、正切)图象的草图能迅速画出吗?能写出他们的单调区、对称轴, 32、三角函数(正弦、余弦、正切)图象的草图能迅速画出吗?能写出他们的单调区、对称轴,取最值时的 x 值的集合吗?( ?(别忘了 值的集合吗?(别忘了 k ∈ Z)
3

三角函数性质要记牢。 的图象及性质: 三角函数性质要记牢。函数 y= A sin(ω ? x + ? ) + k 的图象及性质: 振幅| 振幅|A|,周期 T=



ω

为此函数的对称轴, 取到最值的点,反之亦然, , 若 x=x0 为此函数的对称轴,则 x0 是使 y 取到最值的点,反之亦然,使 y 取到最值的 x

的集合为——————————, 当 ω > 0, A > 0 时函数的增区间为————— ,减区间为—————;当 的集合为——————————, 时函数的增区间为————— 减区间为—————; —————————— —————

ω < 0 时要利用诱导公式将 ω 变为大于零后再用上面的结论。 变为大于零后再用上面的结论。 π 3π 五点作图法: ,2π 求出 x 与 y,依点 (x, y ) 作图 五点作图法:令 ωx + ? 依次为 0 , π , 2 2
(1)如果点 P ( x , y ) 按 向 量 a = (h, k )


33、三角函数图像变换还记得吗? 33、三角函数图像变换还记得吗? 平移公式 平 移 至 P ′ ( x ′ , y ′ ), 则

? x ' = x + h, ? ? ' ? y = y + k. ?
(2) 曲线 f(x,y)=0 沿向量 a = (h, k ) 平移后的方程为 f(x-h,y-k)=0 34、有关斜三角形的几个结论: 正弦定理: 余弦定理: (3)面积公式 34、有关斜三角形的几个结论:(1) 正弦定理: (2) 余弦定理: (3)面积公式 35、在用反三角函数表示直线的倾斜角、两条异面直线所成的角等时, 35、在用反三角函数表示直线的倾斜角、两条异面直线所成的角等时,你是否注意到它们各自的取值范围及意 义? ①异面直线所成的角、直线与平面所成的角、向量的夹角的取值范围依次是 ? 0, 异面直线所成的角、直线与平面所成的角、


π ? π? ?, [0, 2 ], [0, π ] . ? 2? π
2 ].

的角、 ②直线的倾斜角、 l1 到 l 2 的角、 l1 与 l 2 的夹角的取值范围依次是 [ 0 , π ), [ 0 , π ), ( 0 , 直线的倾斜角、 ③反正弦、反余弦、反正切函数的取值范围分别是 [ ? 反正弦、反余弦、

π π

, ], [0, π ], (? , ) . 2 2 2 2

π π

36、同向不等式能相减,相除吗? 36、同向不等式能相减,相除吗? 37、不等式的解集的规范书写格式是什么?(一般要写成集合的表达式) ?(一般要写成集合的表达式 37、不等式的解集的规范书写格式是什么?(一般要写成集合的表达式) 38、 38、分式不等式

f (x ) > a (a ≠ 0 ) 的一般解题思路是什么?(移项通分,分子分母分解因式,x 的系数变为正值, 的一般解题思路是什么?(移项通分,分子分母分解因式 ?(移项通分 母分解因式, 的系数变为正值, g (x )

奇穿偶回) 奇穿偶回) 39、解指对不等式应该注意什么问题?(指数函数与对数函数的单调性, 对数的真数大于零. ?(指数函数与对数函数的单调性 39、解指对不等式应该注意什么问题?(指数函数与对数函数的单调性, 对数的真数大于零.) 40、含有两个绝对值的不等式如何去绝对值? 一般是根据定义分类讨论) 40、含有两个绝对值的不等式如何去绝对值?(一般是根据定义分类讨论)

?a+b? + 41、 等求函数的最值时, 41、利用重要不等式 a + b ≥ 2 ab 以及变式 ab ≤ ? ? 等求函数的最值时,你是否注意到 a,b ∈ R (或 ? 2 ?
2

非负) ,且 等号成立”时的条件, 其中之一应是定值? 一正二定三相等) a ,b 非负) 且“等号成立”时的条件,积 ab 或和 a+b 其中之一应是定值?(一正二定三相等) , 42、 42 、

a2 + b2 a + b 2ab ≥ ≥ ab ≥ , (a , b ∈ R + ) ( 当且仅当 a = b = c 时 , 取等号 ) 取等号) ; 2 2 a+b

a、b、c ∈ R,

a 2 + b 2 + c 2 ≥ ab + bc + ca (当且仅当 a = b = c 时,取等号) 取等号) ;

43、在解含有参数的不等式时,怎样进行讨论?(特别是指数和对数的底 讨论完之后, 43、在解含有参数的不等式时,怎样进行讨论?(特别是指数和对数的底 0 < a < 1 或 a > 1 )讨论完之后,要写 ?( 综上所述,原不等式的解集是… 出:综上所述,原不等式的解集是……. 44、解含参数的不等式的通法是“定义域为前提,函数增减性为基础,分类讨论是关键. 44、解含参数的不等式的通法是“定义域为前提,函数增减性为基础,分类讨论是关键. ”
4

45、对于不等式恒成立问题,常用的处理方式?(转化为最值问题) 45、对于不等式恒成立问题,常用的处理方式?(转化为最值问题) ?(转化为最值问题 三、数列 46 、 等 差 数 列 中 的 重 要 性 质 :( 1 ) 若 m + n = p + q , 则 a m + a n = a p + a q ;( 2 )

数列a2n?1},{a2n},{kan + b}仍成等差数列 n , S2n?Sn ,S3n?S2n仍成等差数列 { ;S
(3)若三数成等差数列,则可设为a-d、a、a+d;若为四数则可设为a- d 、a- d 、a+ d 、a+ d ; 若三数成等差数列,则可设为a a+d;若为四数则可设为a 的最大( 其思路是找出某一项,使这项及它前面的项皆取正( 值或0, 0,而它后面 (4)在等差数列中,求Sn 的最大(小)值,其思路是找出某一项,使这项及它前面的项皆取正(负)值或0,而它后面 在等差数列中, 各项皆取负( >0,d<0,解不等式组 各项皆取负(正)值,则从第一项起到该项的各项的和为最大(小).即:当a1 >0,d<0,解不等式组 an ≥0 an+1 ≤0 则从第一项起到该项的各项的和为最大( ).即 可得Sn 达最大值时的n的值;当a1 <0,d>0,解不等式组 an ≤0 an+1 ≥0 可得Sn 达最小值时的n的值;(5) 若 可得S 达最大值时的n的值; <0,d>0,解不等式组 可得S 达最小值时的n的值; .若 . 是等差数列,S 分别为a 的前n项和, 是等差数列, an ,bn 是等差数列,Sn ,Tn 分别为an ,bn 的前n项和,则 m = 2 m ?1 。.(6).若{ a n }是等差数列,则{ a an }是 b m T2 m ?1 是等差数列. 等比数列,若{ a n }是等比数列且 a n > 0 ,则{ log a an }是等差数列. 等比数列, 47、等比数列中的重要性质: (1 (2 47、等比数列中的重要性质: 1)若 m + n = p + q ,则 a m ? a n = a p ? a q ; 2) S k , S 2 k ? S k , S 3k ? S 2 k 成等 ( ( 比数列
a S 3 2 1 2 1 2 3 2

a1 (1 ? q n ) 48、 项和时, 需要分类讨论. S S q 48、 你是否注意到在应用等比数列求前 n 项和时, 需要分类讨论. q = 1 时, n = na1 ; ≠ 1 时, n = ( ) 1? q
49、等比数列的一个求和公式:设等比数列 {a n } 的前 n 项和为 S n ,公比为 q , 则 等比数列的一个求和公式:

S m+ n = S m + q m S n .
50、等差数列的一个性质: 项和, 50、等差数列的一个性质:设 S n 是数列 {a n } 的前 n 项和, {a n } 为等差数列的充要条件是

S n = an 2 + bn (a, b 为常数)其公差是 2a. 为常数)
51、你知道怎样的数列求和时要用“错位相减”法吗?(若 是等差数列, 是等比数列, 51、你知道怎样的数列求和时要用“错位相减”法吗?(若 c n = a n bn ,其中 {a n } 是等差数列,{bn } 是等比数列, ?( 项的和) 求 {c n } 的前 n 项的和) 52、 求数列的通项公式时, 了吗? 52、用 a n = S n ? S n ?1 求数列的通项公式时,你注意到 a1 = S1 了吗? 53、你还记得裂项求和吗?(如 53、你还记得裂项求和吗?(如 ?(

1 1 1 = ? .) n(n + 1) n n + 1

四、排列组合、二项式定理 排列组合、 54、解排列组合问题的依据是:分类相加,分步相乘,有序排列,无序组合. 54、解排列组合问题的依据是:分类相加,分步相乘,有序排列,无序组合. 55、解排列组合问题的规律是:相邻问题捆绑法;不邻问题插空法;多排问题单排法;定位问题优先法; 55、解排列组合问题的规律是:相邻问题捆绑法;不邻问题插空法;多排问题单排法;定位问题优先法;多元 问题分类法;有序分配问题法;选取问题先排后排法;至多至少问题间接法,还记得什么时候用隔板法? 问题分类法;有序分配问题法;选取问题先排后排法;至多至少问题间接法,还记得什么时候用隔板法?
5

56、排列数公式是: 组合数公式是: 排列数与组合数的关系是: ? 56、排列数公式是: 组合数公式是: 排列数与组合数的关系是: Pn = m!C n
m

m

组合数性质: 组合数性质: C

m n =

C

n?m n

C

m n +

C

m ?1 = n

C

m n +1

∑C
r =0

n

r n

=2

n

r r +1 C rr + C rr+1 + C rr+ 2 + L + C n = C n +1

二项式定理: 二项式定理: ( a + b) = C n a + C n a
n
0

n

1

n ?1

2 r n b + C n a n? 2 b 2 + L + C n a n?r b r + L + C n b n

二项展开式的通项公式: 二项展开式的通项公式: Tr +1 = C n a
r

n?r

b r (r = 0,2 L,n) 1,

五、立体几何 57、 有关平行垂直的证明主要利用线面关系的转化: //线 //面 //面 57、有关平行垂直的证明主要利用线面关系的转化:线//线 ? 线//面 ? 面//面,线⊥线 ? 线⊥面 ? 面⊥面, 垂直常用向量来证。 垂直常用向量来证。 58、作出二面角的平面角主要方法是什么?(定义法、三垂线法)三垂线法:一定平面,二作垂线,三作斜线, ?(定义法 58、作出二面角的平面角主要方法是什么?(定义法、三垂线法)三垂线法:一定平面,二作垂线,三作斜线, 射影可见. 射影可见. 59、二面角的求法主要有:解直角三角形、余弦定理、射影面积法、法向量 59、二面角的求法主要有:解直角三角形、余弦定理、射影面积法、 60、求点到面的距离的常规方法是什么?(直接法 等体积变换法、法向量法) 的常规方法是什么?(直接法、 60、求点到面的距离的常规方法是什么?(直接法、等体积变换法、法向量法) 61、你记住三垂线定理及其逆定理了吗? 61、你记住三垂线定理及其逆定理了吗? 62、有关球面上两点的球面距离的求法主要是找球心角,常常与经度及纬度联系在一起, 62、有关球面上两点的球面距离的求法主要是找球心角,常常与经度及纬度联系在一起,你还记得经度及纬度 的含义吗? 经度是面面角;纬度是线面角) 的含义吗?(经度是面面角;纬度是线面角) 63、你还记得简单多面体的欧拉公式吗?(V+F-E=2, 为顶点数, 是棱数, 为面数) 棱的两种算法, 63、你还记得简单多面体的欧拉公式吗?(V+F-E=2,其中 V 为顶点数,E 是棱数,F 为面数),棱的两种算法, 你还记得吗? 边形, 你还记得吗?(①多面体每面为 n 边形,则 E=

nF mV 多面体每个顶点出发有 条棱, ;②多面体每个顶点出发有 m 条棱,则 E= ) 2 2

六、解析几何 64、设直线方程时, 轴时, 不存在的情况?(例如: ?(例如 64、设直线方程时,一般可设直线的斜率为 k,你是否注意到直线垂直于 x 轴时,斜率 k 不存在的情况?(例如: 一条直线经过点 ? ? 3,?

? ?

3? 2 2 求此弦所在直线的方程。该题就要注意, ? ,且被圆 x + y = 25 截得的弦长为 8,求此弦所在直线的方程。该题就要注意,不 2?

这一解. 要漏掉 x+3=0 这一解.) 65、定比分点的坐标公式是什么?(起点,中点, ?(起点 值可要搞清) 65、定比分点的坐标公式是什么?(起点,中点,分点以及 λ 值可要搞清) 线段的定比分点坐标公式 线段的定比分点坐标公式 设 P(x,y) ,P1(x1,y1) ,P2(x2,y2) ,且 P1 P = λ PP2 ,则
→ →

? ?x = ? ? ?y = ? ?

x1 + λx 2 1+ λ y1 + λy 2 1+ λ

中点坐标公式

x1 + x 2 ? ?x = 2 ? ? ? y = y1 + y 2 ? 2 ?

6

若 A( x1 , y1 ),B ( x 2 , y 2 ),C ( x3 , y3 ) ,则△ABC 的重心 G 的坐标是 ?

? x1 + x 2 + x3 y1 + y 2 + y 3 ? , ?。 3 3 ? ?

66、在利用定比分点解题时, 了吗? 66、在利用定比分点解题时,你注意到 λ ≠ ?1 了吗? 67、在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合, 67、在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中一般提到的两条直 线可以理解为它们不重合. 线可以理解为它们不重合. 68、直线方程的几种形式:点斜式、斜截式、两点式、截矩式、一般式.以及各种形式的局限性.(如点斜式不 68、直线方程的几种形式:点斜式、斜截式、两点式、截矩式、一般式.以及各种形式的局限性. 适用于斜率不存在的直线) 适用于斜率不存在的直线) 69、 69、对不重合的两条直线 l1 : A1 x + B1 y + C1 = 0 , l 2 : A2 x + B2 y + C 2 = 0 ,有

? A B = A2 B1 l1 // l 2 ? ? 1 2 ; l1 ⊥l 2 ? A1 A2 + B1 B2 = 0 . ? A1C 2 ≠ A2 C1
70、直线在坐标轴上的截矩可正,可负, 70、直线在坐标轴上的截矩可正,可负,也可为 0. 71、直线在两坐标轴上的截距相等 71、直线在两坐标轴上的截距相等,直线方程可以理解为 坐标轴上的截距都是 0,也是截距相等. 也是截距相等. 72、 d=—————————— 72、两直线 Ax + By + C1 = 0 和 Ax + By + C 2 = 0 的距离公式 d=—————————— 73、直线的方向向量还记得吗?直线的方向向量与直线的斜率有何关系? 73、直线的方向向量还记得吗?直线的方向向量与直线的斜率有何关系?当直线 L 的方向向量为 m =(x0,y0) 时,直线斜率 k=———————;当直线斜率为 k 时,直线的方向向量 m =————— k=———————; ——————— 74、到角公式及夹角公式———————,何时用? 74、到角公式及夹角公式———————,何时用? ——————— 75、处理直线与圆的位置关系有两种方法: (1 (2 75、处理直线与圆的位置关系有两种方法: 1)点到直线的距离; 2)直线方程与圆的方程联立,判别式. 一 ( 点到直线的距离; ( 直线方程与圆的方程联立,判别式. 般来说,前者更简捷. 般来说,前者更简捷. 76、处理圆与圆的位置关系,可用两圆的圆心距与半径之间的关系. 76、处理圆与圆的位置关系,可用两圆的圆心距与半径之间的关系. 77、在圆中,注意利用半径、半弦长、及弦心距组成的直角三角形并且要更多联想到圆的几何性质. 77、在圆中,注意利用半径、半弦长、及弦心距组成的直角三角形并且要更多联想到圆的几何性质. 78、在利用圆锥曲线统一定义解题时,你是否注意到定义中的定比的分子分母的顺序?两个定义常常结伴而用, 78、在利用圆锥曲线统一定义解题时,你是否注意到定义中的定比的分子分母的顺序?两个定义常常结伴而用, 有时对我们解题有很大的帮助, 有关过焦点弦问题用第二定义可能更为方便。 焦半径公式: (焦半径公式 椭圆: PF1|=———— ; 椭圆: 有时对我们解题有很大的帮助, 有关过焦点弦问题用第二定义可能更为方便。 焦半径公式: ( |

x y + = 1 ,但不要忘记当 a=0 时,直线 y=kx 在两条 a b

p ) 2 79、在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零? 79、在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?判别式 ? ≥ 0 的限 下进行) (求交点 制. 求交点,弦长,中点,斜率,对称,存在性问题都在 ? > 0 下进行). (求交点,弦长,中点,斜率,对称,
双曲线: |PF2|=———— ;双曲线:|PF1|=————


;抛物线 |PF2|=———— (其中 F1 为左焦点 F2 为右焦点 ) 抛物线:|PF|=|x0|+ ;抛物线: PF|

80、椭圆中, 准线方程为 80、椭圆中,a,b,c 的关系为————;离心率 e=————;准线方程为————;焦点到相应准线距离为———— 双曲线 准线方程为 中,a,b,c 的关系为————;离心率 e=————;准线方程为————;焦点到相应准线距离为———— 81、通径是抛物线的所有焦点弦中最短的弦. 81、通径是抛物线的所有焦点弦中最短的弦. 82、你知道吗?解析几何中解题关键就是把题目中的几何条件代数化,特别是一些很不起眼的条件, 82、你知道吗?解析几何中解题关键就是把题目中的几何条件代数化,特别是一些很不起眼的条件,有时起着 关键的作用: 点在曲线上、相交、共线、以某线段为直径的圆经过某点、夹角、垂直、平行、中点、 关键的作用:如:点在曲线上、相交、共线、以某线段为直径的圆经过某点、夹角、垂直、平行、中点、角平 分线、中点弦问题等。 和椭圆参数方程不要忘,有时在解决问题时很方便。 分线、中点弦问题等。圆和椭圆参数方程不要忘,有时在解决问题时很方便。数形结合是解决解几问题的重要 思想方法,要记得画图分析哟! 思想方法,要记得画图分析哟! 83、你注意到了吗?求轨迹与求轨迹方程有区别的。求轨迹方程可别忘了寻求范围呀! 83、你注意到了吗?求轨迹与求轨迹方程有区别的。求轨迹方程可别忘了寻求范围呀! 84、在解决有关线性规划应用问题时,有以下几个步骤:先找约束条件,作出可行域,明确目标函数, 84、在解决有关线性规划应用问题时,有以下几个步骤:先找约束条件,作出可行域,明确目标函数,其中关 键就是要搞清目标函数的几何意义,找可行域时要注意把直线方程中的 y 的系数变为正值。如:求 2<5a-2b<4,的取值范围,但也可以不用线性规划。 2<5a-2b<4,-3<3a+b<3 求 a+b 的取值范围,但也可以不用线性规划。 七、向量
7

85、两向量平行或共线的条件,它们两种形式表示,你还记得吗? 是向量平行的充分不必要条件。 85、两向量平行或共线的条件,它们两种形式表示,你还记得吗?注意 a = λ b 是向量平行的充分不必要条件。 记得吗 (定义及坐标表示) 定义及坐标表示)
2 86、向量可以解决有关夹角、距离、平行和垂直等问题,要记住以下公式: 86、向量可以解决有关夹角、距离、平行和垂直等问题,要记住以下公式:| a | = a · a , 2

cosθ cosθ=

a?b | a || b |

=

x1 x2 + y1 y 2 x12 + y12 x2 2 + y 2 2

87、 利用向量平行或垂直来解决解析几何中的平行和垂直问题可以不用讨论斜率不存在的情况, 要注意 a ? b < 0 87、 利用向量平行或垂直来解决解析几何中的平行和垂直问题可以不用讨论斜率不存在的情况, 夹角为钝角的必要而非充分条件。 是向量 a和向量b 夹角为钝角的必要而非充分条件。 88 、 向 量 的 运 算 要 和 实 数 运 算 有 区 别 : 如 两 边 不 能 约 去 一 个 向 量 , 向 量 的 乘 法 不 满 足 结 合 律 , 即

a(b ? c) ≠ (a ? b)c ,切记两向量不能相除。 切记两向量不能相除。
89、你还记得向量基本定理的几何意义吗? 89、你还记得向量基本定理的几何意义吗?它的实质就是平面内的任何向量都可以用平面内任意不共线的两个 向量线性表示,它的系数的含义与求法你清楚吗? 向量线性表示,它的系数的含义与求法你清楚吗? 90、一个封闭图形首尾连接而成的向量和为零向量,这是题目中的天然条件,要注意运用,对于一个向量等式, 90、一个封闭图形首尾连接而成的向量和为零向量,这是题目中的天然条件,要注意运用,对于一个向量等式, 可以移项,两边平方、两边同乘以一个实数,两边同时取模, 一个向量, 可以移项,两边平方、两边同乘以一个实数,两边同时取模,两边同乘以 一个向量,但不能两边同除以一个向 量。 91、 91、向量的直角坐标运算 设 a = (a1 , a 2 , a3 ), b = (b1 , b2 , b3 ) ,则
→ → →

a + b = (a1 + b1 , a 2 + b2 , a3 + b3 )






a ? b = (a1 ? b1 , a 2 ? b2 , a 3 ? b3 )


λ a = (λa1 , λa 2 , λa3 )(λ ∈ R )
→ →

a ? b = a1b1 + a 2 b2 + a 3 b3
→ 2 2 a = a? a = a12 + a 2 + a3 → →

cos < a , b >=
→ →

→ →

a1 b1 + a 2 b2 + a 3b3
2 2 2 a + a 2 + a 3 b12 + b2 + b32 2 1

a// b ? a1 = λb1 ,a 2 = λb2 , a3 = λb3 , (λ ∈ R ) a ⊥ b ? a1b1 + a 2 b2 + a 3b 3 = 0




设 A= ( x1 , y1 , z1 ) , B= ( x 2 , y 2 , z 2 ) , 则 AB = OB? OA = ( x 2 , y 2 , z 2 ) → → →

(x1 , y1 , z1 ) = (x2 ? x1 , y 2 ? y1 , z 2 ? z1 )
8

AB =



AB? AB +





(x2 ? x1 )2 + ( y 2 ? y1 )2 + (z 2 ? z1 )2

八、导数 92、导数的几何意义即曲线在该点处的切线的斜率,学会定义的多种变形。 92、导数的几何意义即曲线在该点处的切线的斜率,学会定义的多种变形。 93、几个重要函数的导数: 为常数) 93、几个重要函数的导数:① C = 0 ,(C 为常数)② x
'

( ) = nx (n ∈ Q )
n ' n ?1

导数的四运算法则 (? ± υ ) = ? ' ± υ '
'

94、利用导数可以证明或判断函数的单调性, ’(x)≥ ’(x)≤ 带上等号。 94、利用导数可以证明或判断函数的单调性,注意当 f ’(x)≥0 或 f ’(x)≤0,带上等号。 95、 f(x)在 处取得极值的非充分非必要条件,f(x)在 处取得极值的充分要条件是什么? 95、 f ′ (x0)=0 是函数 f(x)在 x0 处取得极值的非充分非必要条件,f(x)在 x0 处取得极值的充分要条件是什么? 96、利用导数求最值的步骤: (1 96、利用导数求最值的步骤: 1)求导数 f (
'

(x ) (2)求方程 f ' (x ) =0 的根 x1 , x2 ,L , xn

(3)计算极值及端点函数值的大小 根据上述值的大小,确定最大值与最小值. (4)根据上述值的大小,确定最大值与最小值. 97、求函数极值的方法:先找定义域,再求导,找出定义域的分界点,根据单调性求出极值。告诉函数的极值 97、 求函数极值的方法:先找定义域,再求导, 找出定义域的分界点, 根据单调性求出极值。 这一条件,相当于给出了两个条件: 函数在此点导数值为零, 函数在此点的值为定值。 这一条件,相当于给出了两个条件:①函数在此点导数值为零,②函数在此点的值为定值。 九、概率统计 98、有关某一事件概率的求法:把所求的事件转化为等可能事件的概率 常常采用排列组合的知识) 的概率( 98、有关某一事件概率的求法:把所求的事件转化为等可能事件的概率(常常采用排列组合的知识),转化为若 干个互斥事件中有一个发生的概率,利用对立事件的概率,转化为相互独立事件同时发生的概率, 干个互斥事件中有一个发生的概率,利用对立事件的概率,转化为相互独立事件同时发生的概率,看作某一事 次发生的概率,但要注意公式的使用条件。 件在 n 次实验中恰有 k 次发生的概率,但要注意公式的使用条件。 为互斥事件, 1)若事件 A、B 为互斥事件,则 A+B)=P( +P( P(A+B)=P(A)+P(B) 为相互独立事件, (2)若事件 A、B 为相互独立事件,则 =P( · P(A·B)=P(A) P(B) (3)若事件 A、B 为对立事件,则 为对立事件, +P( P(A)+P(B)=1 一般地, 一般地, p A = 1 ? P ( A) p,那么在 次独立重复试验中这个事恰好发生 (4)如果在一次试验中某事件发生的概率是 p,那么在 n 次独立重复试验中这个事恰好发生 K 次的概率
k Pn (K ) = C n p k (1 ? p ) n?k

()

99、抽样方法主要有:简单随机抽样(抽签法、随机样数表法)常常用于总体个数较少时, 99、抽样方法主要有:简单随机抽样(抽签法、随机样数表法)常常用于总体个数较少时,它的主要特征是从总 体中逐个抽取;系统抽样,常常用于总体个数较多时,它的主要特征就是均衡成若干部分,每一部分只取一个; 体中逐个抽取;系统抽样,常常用于总体个数较多时,它的主要特征就是均衡成若干部分,每一部分只取一个; 分层抽样,主要特征分层按比例抽样,主要使用于总体中有明显差异。 分层抽样,主要特征分层按比例抽样,主要使用于总体中有明显差异。它们的共同特征是每个个体被抽到的概 率相等。 率相等。 100、用总体估计样本的方法就是把样本的频率作为总体的概率。 100、用总体估计样本的方法就是把样本的频率作为总体的概率。 十、解题方法和技巧 101、总体应试策略: 易后难,一般先作选择题,再作填空题,最后作大题, 101、总体应试策略:先易后难,一般先作选择题,再作填空题,最后作大题,选择题力保速度和准确度为后面 大题节约出时间,但准确度是前提,对于填空题,看上去没有思路或计算太复杂可以放弃,对于大题, 大题节约出时间,但准确度是前提,对于填空题,看上去没有思路或计算太复杂可以放弃,对于大题,尽可能 不留空白,把题目中的条件转化代数都有可能得分,在考试中学会放弃,摆脱一个题目无休止的纠缠, 不留空白,把题目中的条件转化代数都有可能得分,在考试中学会放弃,摆脱一个题目无休止的纠缠,给自己 营造一个良好的心理环境,这是考试成功的重要保证。 营造一个良好的心理环境,这是考试成功的重要保证。 102、解答选择题的特殊方法是什么? 顺推法,估算法,特例法,特征分析法,直观选择法,逆推验证法、 102、解答选择题的特殊方法是什么?(顺推法,估算法,特例法,特征分析法,直观选择法,逆推验证法、数 形结合法等等) 形结合法等等) 103、解答填空题时应注意什么?(特殊化,图解,等价变形) ?(特殊化 103、解答填空题时应注意什么?(特殊化,图解,等价变形)
9

104、解答应用型问题时,最基本要求是什么?(审题、找准题目中的关键词,设未知数、列出函数关系式、 104、解答应用型问题时,最基本要求是什么?(审题、找准题目中的关键词,设未知数、列出函数关系式、代 问题时 ?(审题 入初始条件、注明单位、 入初始条件、注明单位、答) 105、解答开放型问题时,需要思维广阔全面,知识纵横联系. 105、解答开放型问题时,需要思维广阔全面,知识纵横联系. 106、解答信息型问题时,透彻理解问题中的新信息,这是准确解题的前提. 106、解答信息型问题时,透彻理解问题中的新信息,这是准确解题的前提. 107、解答多参型问题时,关键在于恰当地引出参变量, 想方设法摆脱参变量的困绕.这当中,参变量的分离、 107、解答多参型问题时,关键在于恰当地引出参变量, 想方设法摆脱参变量的困绕.这当中,参变量的分离、 集中、消去、代换以及反客为主等策略,似乎是解答这类问题的通性通法. 集中、消去、代换以及反客为主等策略,似乎是解答这类问题的通性通法. 108、学会跳步得分技巧,第一问不会,第二问也可以作,用到第一问就直接用第一问的结论即可,要学会用 由 108、学会跳步得分技巧,第一问不会,第二问也可以作,用到第一问就直接用第一问的结论即可,要学会用“ “ 已知得” 由题意得” 由平面几何知识得”等语言来连接,一旦你想来了,可在后面写上“补证”即可。 “由题意得 “ “由平面几何知识得 已知得” 由题意得” 由平面几何知识得”等语言来连接,一旦你想来了,可在后面写上“补证”即可。 “

10


赞助商链接

高中数学知识点总结(最全版)

高中数学知识点总结(最全版) - 高中新课标理科数学 (必修+选修) 所有知识点总结 引言 1.课程内容: 必修课程由 5 个模块组成: 必修 1:集合、函数概念...

高中数学知识点总结(最全版)

高中数学知识点总结(最全版) - 数学知识点总结 引言 1.课程内容: 必修课程由 5 个模块组成: 必修 1:集合、函数概念与基本初等函数(指、对、幂函数) 必修 2...

高中数学知识易错点梳理

高中数学知识易错点梳理 - 高三文科数学高考知识点梳理 一、集合、简易逻辑、函数 1. 研究集合必须注意集合元素的特征即三性 ( 确定 , 互异 , 无序...

高中数学知识点总结(最全版)

高中数学知识点总结(最全版) - 数学知识点总结 引言 1.课程内容: 必修课程由 5 个模块组成: 必修 1:集合、函数概念与基本初等函数(指、对、幂函数) 必修 2...

高中数学知识易错点梳理

高中数学知识易错点梳理_数学_高中教育_教育专区。包含高中数学主要的易错点,及各章节主要的思想方法。解填空题易犯的错误。高中数学解题应注意的几点 1.研究集合...

高中数学知识点总结(珍藏版)

高中数学知识点总结(珍藏版) - 高中数学知识点总结 引言 1.课程内容: 必修课程由 5 个模块组成: 必修 1:集合、函数概念与基本初等函数(指、对、幂函数) 必修...

高一数学知识点总结

高一数学知识总结必修一 一、集合 一、集合有关概念 1. 集合的含义 2. 集合的中元素的三个特性: (1)元素的确定性如:世界上最高的山 (2)元素的互异性如:...

高一数学知识点归纳

高一数学知识点归纳_高一数学_数学_高中教育_教育专区。集合与函数概念 一、集合有关概念 1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象...

2016年高中数学知识点总结(最全版)

2016年高中数学知识点总结(最全版) - 2016 年数学知识点总结 引言 1.课程内容: 必修课程由 5 个模块组成: 必修 1:集合、函数概念与基本初等函数(指、对、幂...

教师版整理全面《高中数学知识点归纳总结》

教师版整理全面《高中数学知识点归纳总结》 - 教师版高中数学必修+选修知识点归纳 引言 1.课程内容: 必修课程由 5 个模块组成: 必修 1:集合、函数概念与基本...