kl800.com省心范文网

eviews经典单方程计量经济学模型


第三章 经典单方程计量经济学 模型:放宽基本假定的模型

? 第一节 ? 第二节 ? 第三节 ? 第四节 ? 第五节

误设定的诊断与处理 多重共线性的诊断与对策 异方差的诊断与处理 自相关的诊断与处理 随机解释变量问题(工具变量法)

第一节 误设定
? 模型设定误差的类型一般有:
? 遗漏了重要的解释变量; ? 模型包含无关的解释变量; ? 采用了不正确的函数形式。

模型设定误差的检验
? (1)

模型是否包含无关解释变量的检验 ? 对模型中是否包含无关解释变量的检验,就 是对模型解释变量的参数是否为0的检验 ? (2)模型遗漏重要解释变量和采用错误函数 形式的检验 ? 1)残差图示法检验 ? 2)一般性设定偏误检验:拉姆齐(Ramsey) 的RESET检验

? 拉姆齐的RESET检验的EViews实现:
? 选择Equation工具栏中的View\Stability

Test\Ramsey RESET Test功能。

例7
? 本实验采用的数据是美国25家主要金属行业

的产出Y、资本投入K以及劳动投入L。 (table3-2.wf1)。有人认为估计模型为 LnY=LnA+aLnK+bLnL,利用Ramsey RESET检验来判断模型是否存在模型设定误 差。检验的原假设是:模型不存在设定误差。

第二节 多重共线性的诊断与对策
? 一般地,如果模型的F很大,

F检验通过,但 有些系数不能通过t检验,或模型的自变量之 间简单相关系数很高,或回归系数的符号与 简单相关系数的符号相反,都有理由怀疑存 在多重共线性。

? 另外,方差扩大因子法也是诊断多重共线性

的常用手段。

? 其中

R2 j 是把xj作为因变量,其余p-1个自变量

作为自变量建立多元线性回归模型所得的决 定系数,也即xj与其余p-1个自变量间的复相 关系数。

? 当存在某变量的VIF,大于10时就可认为自变

量间有比较严重的共线性。还可以用所有p个 自变量所对应的方差扩大因子的平均数,如 远大于10时,表示自变量间存在严重的共线 性。 ? EViews不能直接计算自变量的方差扩大因子, 需根据前述公式计算得到

? 一般情况下并不需要对共线性进行特别的检

验,但如果回归方程的可决系数很高,或F值 很大,而系数的标准差较大(t值很小),则 说明解释变量间存在较严重的多重共线性。

当自变量出现共线性时,应设法消除其影响,一方 面从收集数据,增大样本容量考虑,一方面改变模 型形式。 ? 常用的方法有: ? 剔除法。设法找到引起共线性的变量并给予剔除。 这涉及到剔除的准则问题,通常可选择VIF值最大 或未通过系数显著性检验的变量进行剔除,剔除时 最好结合testdrop检验,检验剔除自变量是否对模 型不利。 ? 差分法。将原模型变形,在建模过程中在方程定义 栏中输入 y-y(-1) x1-x1(-1) … xp-xp(-1) . 差分常常 会丢失一些信息,使用时应慎重。
?

? 增加样本容量。
? 利用先验信息改变参数的约束形式 ? 变换模型的形式 ? 逐步回归法 ? 主成分回归

案例——中国粮食生产函数
根据理论和经验分析,影响粮食生产(Y)的 主要因素有: 农业化肥施用量(X1);粮食播种面积(X2) 成灾面积(X3); 农业机械总动力(X4); 农业劳动力(X5) 已知中国粮食生产的相关数据(case12),建立 中国粮食生产函数: Y=?0+?1 X1 +?2 X2 +?3 X3 +?4 X4 +?4 X5 +?

1、用OLS法估计上述模型:
? ? ?12816 Y .44 ? 6.213X1 ? 0.421X 2 ? 0.166X 3 ? 0.098X 4 ? 0.028X 5

(-0.91)

(8.39)

(3.32)

(-2.81)

(-1.45)

(-0.14)

R2接近于1; 给定?=5%,得F临界值 F0.05(5,12)=3.11 F=638.4 > 15.19, 故认上述粮食生产的总体线性关系显著成立。 但X4 、X5 的参数未通过t检验,且符号不正确, 故解释变量间可能存在多重共线性。

2、检验简单相关系数
? (1)相关系数检验。在命令窗口输入:

COR X1 X2 X3 X4 X5,或者在变量组窗口, 点击VIEW-CORRELATION

2、检验简单相关系数
列出X1,X2,X3,X4,X5的相关系数矩阵:
X1 X2 X3 X4 X5
?

X1 1.00 0.01 0.64 0.96 0.55

X2 0.01 1.00 -0.45 -0.04 0.18

X3 0.64 -0.45 1.00 0.69 0.36

X4 0.96 -0.04 0.69 1.00 0.45

X5 0.55 0.18 0.36 0.45 1.00

发现: X1与X4间存在高度相关性。

? (2)方差膨胀因子检验。

? 先建立每个解释变量对其余解释变量的辅助

回归模型。EVIEWS可以调用已建方程的回 归系数。 ? 调用的格式是:equation_name.@contents, 其中前面是已建方程的名称,contents包括 已建方程中的系数和统计量,常用的有 coef(n), 表示系数向量矩阵的第n个元素,R2 是拟合优度等。这样调用可以重新输入带来 的一些不必要的麻烦。

? 计算X1的VIF值。首先建立一个方程,不妨

命名为eqx1。它是以x1为因变量,其余变量 为自变量建立的方程,然后在主窗口命令行 输入 scalar vifx1=1/(1-eqx1.@R2), 该命令 的意思是建立一个取值为上式的标量vifx1, 其中R2是R2.执行后主窗口的左下角状态栏上 会出现:“vifx1 successfully created”的字样, 同时工作表中产生一个叫做vifx1的新变量。 可以查看其值,大于10,就是存在多重共线 性。

3、找出最简单的回归形式
分别作Y与X1,X2,X4,X5间的回归:
(25.58) (11.49) R2=0.8919 F=132.1 DW=1.56

? ? 30867 Y .64 ? 4.576X 1

(-0.49) (1.14) R2=0.075 F=1.30 DW=0.12

? ? ?33821 Y .18 ? 0.699X 2

? ? 31919 Y .0 ? 0.380X 4
(17.45) (6.68) R2=0.7527 F=48.7 DW=1.11

? ? ?28259 Y .19 ? 2.240X 5
(-1.04) (2.66) R2=0.3064 F=7.07 DW=0.36

?

可见,应选第1个式子为初始的回归模型。

4、逐步回归

将其他解释变量分别导入上述初始回归模型,寻 找最佳回归方程。

第三节 异方差的检验与修正
? 检验的非正式方法
? 检验的正式方法 ? 异方差的修正

非正式方法
? 1.根据问题的性质 ? 在涉及不均匀单位的横截面数据中,异方差

可能是常有的情况。 ? 2.残差的图形检验 ? 利用因变量Y与解释变量X的散点图或者残差 平方与X的散点图,对异方差是否存在及其类 型作直观的近似的判断 ? 异方差的类型大致可分为递增异方差、递减 异方差和复杂异方差三种

图形检验

EViews操作
Ls y c x ? Genr e1=resid ? Genr e2=e1^2 ? Scat e2 x (如果解释变量比较多,则作e2与y的散 点图) ? 或者: ? 在eviews中,建立回归模型之后,在方程窗口中点 击Resids按钮可以得到模型的残差分布图。
?


? case15

正式方法
? 帕克检验
? 格里奇检验 ? G-Q检验 ? White检验 ? ARCH检验

帕克检验(Park test)
? 帕克的基本思想是:利用残差平方和序列e2,

求Lne2对Lnxi 的回归方程,最后对回归方程 作显著性、拟合优度判断,以确定异方差是 否存在。

帕克检验步骤
①用原始样本数据估计模型,求出残差序列,并生成 对数序列 操作: ①LS Y C X ②GENR E1=RESID

③GENR E2=E1^2 ④GENR LNE2=LOG(E2) ②求X序列的对数序列,并用残差的对数序列对X的对 数序列作回归分析

操作:

①GENR X1=LOG(X)

②LS LNE2 C X1

如果有多个解释变量,则对每个解释变量都做形如以上的回归。 或者作e2对Y的估计值的回归。

③观察R2、t、F检验,确定原始序列是否有异方差

? 帕克检验的适用条件:可以是小样本
? 帕克检验的结果:判断有无异方差

格里瑟检验(Glejser)
? 格里瑟检验的基本思想:
?

利用残差绝对值∣ei∣序列对Xi进行回归, 由回归的显著性、拟合优度判断异方差是否 存在。 e ?b ?b X ?v
i 1 2 i i

ei ? b1 ? b2 X i ? vi 1 ei ? b1 ? b2 ? vi Xi

? ①用原始样本数据估计模型,求出残差序列 ? 操作:①LS

YCX ? ②GENR E1=RESID ? ③GENR E2=ABS(E1) ? ②用残差绝对值序列与Xih序列进行回归分析 ? Xih 中的h通常需要选择多种数值进行试算 ? 操作:①GENR XH=X^H(H先赋值) ? ②LS E2 C XH ? ③经过R2、t、F检验,确定最合适的回归形 式

? 与帕克检验一样,误差项本身可能存在异方

差。 ? 然而,对于大样本,上述模型能够很好地检 测异方差问题。因此格里奇检验可用作大样 本的检测工具。

G-Q检验(戈德菲尔德—匡特 检验)
? 先将样本一分为二,对子样1和子样2分别作

回归,然后利用两个子样的残差均方差之比 构造统计量进行异方差检验。这个统计量服 从F分布。

操作
?
?

①将样本容量为n的样本观察值(Xi,Yi),按解释变量观察值Xi 的大小顺序排列。 操作:SORT X ②将序列中间的C=n/4个观察值除去,并将剩下的观察值划 分为大小相同的两个子样。每个子样的容量均为(n-c)/2。
③对每个子样分别求回归方程,并计算各自的残差平方和。 子样1的残差平方和用Σe12表示,子样2的残差平方和用Σe22 表示。 操作:用SMPL定义子样区间,用LS作回归(两次)

?

?

?

④提出假设:H0: σ12=σ22, H1: σ12≠σ22 ? σ12、σ22是分别对应两个子样的随机项方差
?
?

⑤构建F统计量:

n?c ? k ? 1) n?c n?c 2 F? ~ F ( ? k ? 1 , ? k ? 1) 2 2 2 ? e1 n?c ( ? k ? 1) 2 (

2 e ?2

操作:用计算器功能将直接读出的残差平均和相比

? ⑥检验并决策:根据给定的α值,查F分布表

得临界值 ? 当F>Fα时,认为序列存在异方差
? 例:case

15

? G-Q检验的适用条件:大样本
? G-Q检验的基础:F统计量 ? G-Q检验的结果:判断有无异方差

White检验
? White检验是通过建立辅助回归模型的方式来

判断异方差性,它不需要关于异方差的任何 先验知识,只要求在大样本的情况下即可。

White检验的具体步骤如下: ? 1.用OLS法估计模型,并计算出相应的残差平方, 作辅助回归模型:
?
2 et2 ? a0 ? a1x1t ? a2 x2t ? a3 x12t ? a4 x2 t ? a5 x1t x2t ? vt

2.计算统计量nR2,其中n为样本容量,R2为辅助回 归函数中的未调整的决定系数。 ? 3.查卡方分布表,在给定显著性水平下,判断是否 存在异方差性。(原假设:不存在异方差)
?

? 利用EViews软件可以直接进行White检验。
? (1)建立回归模型:

LS y c x1 x2 ? (2)检验异方差性:在方程窗口中依次点击 View\Residual Test\White Heteroskedasticity ? 此时可以选择在辅助回归模型中是否包含交 叉乘积项(cross terms)。输出结果中obs * Rsquared即White检验统计量,由其双侧概率 可以判断是否拒绝无异方差性的原假设。 ? 例:case 15

? 例:case2是1950-1987年间美国机动汽油消

费量和影响消费量的变量数值。其中各变量 表示:QMG-机动车汽油消费量;MOB-汽车 保有量;PMG-机动汽油零售价格;POP-人 口数;GNP-按照1982年美元计算的GNP; 以汽油消费量为因变量,其它变量为自变量, 建立一个回归模型。并对美国机动车汽油消 费量研究模型进行异方差检验。

ARCH检验
? 恩格尔(Engel)于1982年提出了一种检验时间

序列存在异方差性的方法
? 这种检验方法不是把随机误差项方差看作xi

的函数,而是把其看作其滞后项的函数。

?

在方程输出结果窗口选择view\Residuallest\ARCH
LM Test,屏幕提示用户指定卡方检验的阶数,系 统默认为1,点击OK完成。

?

ARCH检验的特点是:要求变量的观测值为大样本,
并且是时间序列数据。


? 序列S和X分别代表1951年至1998年我国商

品零售物价指数和居民消费价格指数,见 case18.以商品零售物价指数序列为因变量, 为考察变量间的动态影响,故采用分布滞后 模型(通过反复试验,选取了一个相对较好 的模型形式),其形式为 ? St=b1Xt+b2Xt-1+b3Xt-2+b4St-1+b5St-3+et ? 对残差序列进行ARCH效应检验

异方差的修正方法
? 一、FGLS
? 二、加权最小二乘法 ? 三、模型对数变换法

模型变换法(FGLS)
? 模型变换法是对存在异方差的总体回归方程

作适当的代数变换,使之成为满足同方差假 定的模型,然后用OLS法估计。 ? 变换的关键在于事先对异方差=f(x)的具体形 式有一个合理的假设。这个假设可以通过对 具体经济问题的经验分析,或者通过格里奇 检验、帕克检验提供的信息加以确定。

Yi b0 εi ? ? b1 X i ? Xi Xi Xi

Yi b0 εi ? ? b1 ? Xi Xi Xi
Yi b0 b1 X i εi ? ? ? r0 ? r1 X i r0 ? r1 X i r0 ? r1 X i r0 ? r1 X i

加权最小二乘法
? 对较大的残差平方和赋予较小的权数,对较

小的残差平方和赋予较大的权数。 ? 命令方式: ? LS(W=XH) Y C X

? 菜单方式:
? 在方程窗口点击Estimate按钮; ? 在对话框中点击option; ? 在参数设置对话框中选定Weight

Ls方法,并

在权数栏中输入权数变量; ? 对估计后的模型,再使用white检验判断是否 消除了异方差。

模型对数变换法
? 对各变量取对数,缩小变量值的尺度。
? Lny=b0+b1lnx+e

第三节 自相关的检验及修正
? 诊断随机项是否存在自相关,就是对误差项

进行分析。常用的直观方法是绘制残差序列 图,另外还有回归检验和D.W检验、高阶自 相关检验。

? 基本思路:

首先, 采用 OLS 法估计模型, 以求得随机误差项的
~ e i 表示: “近似估计量” ,用

~ ? Y ? (Y ?) e i i i 0 ls

然后,通过分析这些“近似估计量”之间的相 关性,以判断随机误差项是否具有序列相关性。

? 绘制残差序列图。在回归方程结果输出窗口

选Procs/Make Residual Series, 并在随后出 现的对话框中输入残差序列名,可以生成模 型的残差序列。观察它的分布图可选 View/Actual, Fitted, Residual/Residual Graph实现,也可通过对已命名的残差序列e 进行View/Line Graph操作。如果残差et随t的 变化呈现出规律性的变化,如形成锯齿形或 循环状的变化,可以断定残差序列存在相关。

? 回归检验法。首先应用OLS估计模型并求出E

的估计值即残差项e,然后以et为被解释变量, 以各种可能的相关变量如et-1、et-2等作为自变 量进行线性拟合。 ? 对各种拟合形式进行统计检验,选择显著的 最优的拟合形式作为序列相关的具体形式。 用这种方法,确定自相关的同时也确定了自 相关的形式,适用性较强。

~ ~ et ? ? et ?1 ? ? t
~ ??e ~ ?? e ~ ?? e t 1 t ?1 2 t ?2 t
……

? 如果存在某一种函数形式,使得方程显著成立, 则说明原模型存在序列相关性。 ? 回归检验法的优点是:
? 能够确定序列相关的形式; ? 适用于任何类型序列相关性问题的检验。

? D.W检验。该方法适用于小样本的一阶自相

关情况。应用较为十分普遍,但也存在明显 弱点:当回归方程右边存在因变量的滞后项如 yt-i(i=1,2…)时,检验失效。

D.W检验步骤:
(1)计算DW值 (2)给定?,由n和k的大小查DW分布表,得临界值dL和dU (3)比较、判断 若 0<D.W.<dL 存在正自相关 dL<D.W.<dU dU <D.W.<4-dU 4-dL <D.W.<4
正 相 关 不 能 确 定 无自相关

不能确定 无自相关 存在负自相关
不 能 确 定

4-dU <D.W.<4- dL 不能确定

负 相 关

0

dL

dU

2

4-dU 4-dL

高阶自相关检验
? 1.相关图检验
? 偏相关系数是衡量多个变量之间相关程度的

重要指标,可以用它来判断自相关性的类型。 ? 命令:Ident resid ? 菜单:View/residual test/correlogram-Qstatistics

2.Q统计量检验 ? H0:不存在p阶自相关 ? 由于Q统计量的伴随概率要根据自由度来估算,因 此一个大的样本容量是保证Q统计量有效的重要因 素 ? 3.LM检验 ? 克服DW检验存在的缺陷。 ? 菜单:View/residual test/serial correlation LM test ? 实际中,可以从1阶逐渐向更高阶检验,并用辅助 方程中各残差项前参数的显著性来帮助判断序列相 关的阶数。
?

? 残差序列存在自相关的回归模型,应分析导

致自相关的原因,以采取相应的措施。可以 采用差分法和Cochrane- Orcutt迭代法直接 解决自相关。 ? 差分法是用增量数据代替原来的样本数据。 它较好地克服了自相关,消除自相关的方法 很简单。但该方法得到的方程往往存在拟合 不佳,且改变了原有模型的形式,故实际不 太常用。

差分法
? 一阶差分法

yi ? ? o ? ?1 x1i ? ? 2 x2i ? ? ? ? k xki ? ? i ?yi ? ?1?x1i ? ? 2 ?x2i ? ? ? ? k ?xki ? ? i ? ?i ?1
? 如果原模型存在完全一阶正相关,那么我们

可以用最小二乘法对差分方程求解参数。

操作:
? Genr

dy=y-y(-1) ? Genr dx1=x1-x1(-1) ? Genr dx2=x2-x2(-1) ?… ? LS dy dx1 dx2…

? 广义差分法
? 如果原模型存在

?i ? ?1 ?i ?1 ? ? 2 ?i ?2 ? ... ? ?l ?i ?l ? ? i
yi ? ?1 yi ?1 ? ... ? ? l yi ?l ? ? 0 (1 ? ?1 ? ... ? ? l ) ? ?1 ?x1i ? ?1 x1i ?1 ? ... ? ? l x1i ?l ? ? ... ?

可以将原来的模型变换为

? k ?xki ? ?1 xki?1 ? ... ? ? l xki?l ? ? ? i

此时可用最小二乘法得到参数估计量。

科克伦-奥科特迭代法
以一元线性模型为例: 首先,采用OLS法估计原模型 Yi=?0+?1Xi+?i 得到的?的“近似估计值”,并以之作为观测值 使用OLS法估计下式

?i=?1?i-1+?2?i-2+??L?i-L+?i
?1 , ? ?2 ,? , ? ?l ,作为随机误差项的相关系 得到 ? 数 ? , ? ,? , ? 的第一次估计值。
1 2 l

?1 ? ? ? ? ? l ) ? ?1 ( X i ? ? ?1 X i ?1 ? ? ? ? ? l X i ?l ) ? ? i Yi ? ?1Yi ?1 ? ? ? ? l Yi ?l ? ? 0 (1 ? ?

i ? 1 ? l ,2 ? l ,?, n

求出?i新的“近拟估计值”, 并以之作为样本 观测值,再次估计 ?i=?1?i-1+?2?i-2+??L?i-L+?i

类似地,可进行第三次、第四次迭代。
关于迭代的次数,可根据具体的问题来定。 一般是事先给出一个精度,当相邻两次 ? 1,?2, ? ,?L 的估计值之差小于这一精度时,迭代终止。 实践中,有时只要迭代两次,就可得到较满 意的结果。两次迭代过程也被称为科克伦 - 奥科 特两步法。

?应用软件中的广义差分法
在 Eview 软件包下,广义差分采用了科克伦 - 奥 科特(Cochrane-Orcutt)迭代法估计?。 在解释变量中引入AR(1)、AR(2)、…,即可得 到参数和ρ1、ρ2、…的估计值。 其中 AR(m) 表示随机误差项的 m 阶自回归。在 估计过程中自动完成了ρ1、ρ2、…的迭代。

? 例:case17是1950-1987年间美国机动车汽

油消费量和影响消费量的变量数据。Y-机动 车汽油消费量,X2-机动汽油零售价格,X3人口数,X4-GNP。

? 例:case35列出了我国城乡居民储蓄存款年

底余额Y(单位:亿元)和GDP指数X (1978=100)的历年统计资料,试建立居民 储蓄存款模型,并检验模型的自相关性。 ? N=21,k=2,a=0.05, dL=1.221,dU=1.42 ? N=19,k=2,a=0.05, dL=1.18,dU=1.4

? 一般是先根据残差图和DW值初步判断模型是

否存在自相关性,然后再利用偏相关系数检 验或B-G LM检验法进一步确认相关性。

发电量与工农业总产值关系模型
? Y-发电量
? X1-经价格调整后的农业总产值 ? X2-经价格调整后的轻工业总产值 ? X3-经价格调整后的重工业总产值 ? Case19

经散点图,发现,Y与X1成线性关系,Y与X2成 二次关系,Y与X3成二次关系。 ? 可建立模型为:
?

Y ? ?0 ? ?1 X 1 ? ? 2 X 2 ? ?3 X 3 ? ?

1 2

1 2

? K=4,

n=24, dL=1.10, dU=1.66

工具变量
? 如果模型中出现随机解释变量并且与随机误

差项相关时,普通最小二乘法就不能用于模 型参数的估计。最常用的估计方法是工具变 量法。

? 随机解释变量问题主要表现于用滞后被解释

变量作为模型的解释变量的情况。而由于经 济活动具有连续性,使得这类模型在以时间 序列数据作样本的模型中占据较大份额。例 如,消费不仅受收入的影响,还受前期消费 水平的影响;投资不仅受收入的影响,还受 前期投资水平的影响;等等。但是并不是所 有包含滞后被解释变量的模型都带来“随机 解释变量问题”。

? 工具变量法(IV)的基本思路是:当随机解

释变量与随机误差项相关时,则寻找另一个 变量,该变量与随机解释变量高度相关,但 与随机误差项不相关,称其为工具变量,用 其替代随机解释变量。

选择为工具变量的变量必须满足以下条件: ? (1)与所替代的随机解释变量高度相关; ? (2)与随机误差项不相关; ? (3)与模型中其它解释变量不相关,以避免 出现多重共线性。

? 例:1978-1998年中国国内生产总值GDP,

宏观消费CONS,资本总额CAPI数据见 case22。建立宏观消费模型(消费与GDP)

? 模型中宏观消费CONS是随机变量。因为

CONS是国内生产总值GDP的一部分,所以 GDP也应该是随机变量,这就违反了模型中 解释变量非随机的假定。而且GDP也必然与 u高度相关,估计结果还显示模型存在严重的 自相关,所以应该选择一个工具变量设法替 代变量GDP。

? 资本总额CAPI是GDP的一部分,与GDP高度

相关。经计算, 以上模型的残差与CAPI的相 关系数为-0.03,这在一定程度上说明CAPI与 u不相关。基于上述理由,选择CAPI做GDP 的工具变量。

? 菜单操作:从EViews主菜单中点击Quick键,

并选择Estimate Equation功能,从而打开 Equation Specification (模型设定)对话框。 点击Method窗口,两阶段最小二乘估计方法, 在Equation Specification选择区输入命令 cons c gdp, 在Instrument list (列写工具变量) 选择区输入命令 c capi ? 命令操作: ? TSLS Cons c gdp @ C capi


第五章 经典单方程计量经济学模型:专门问题

第五章 经典单方程计量经济学模型:专门问题 一、内容提要 本章主要讨论了经典单方程回归模型的几个专门题。 第一个专题是虚拟解释变量问题。虚拟变量将经济现象中...

第三章 经典单方程计量经济学模型

第三章 经典单方程计量经济学模型:多元线性回归模型 3—1 解释下列概念 (1)多元...18 1253.0 10 604.1 解答: 解答: (1)(2)Eviews 软件的计算结果如图所示...

第五章 经典单方程计量经济学模型:专门问题

《计量经济学》高等教育出版社《计量经济学》高等教育出版社隐藏>> 经典单方程计量经济学模型: 第五章 经典单方程计量经济学模型:专门问题 一,内容提要 本章主要...

第三讲 经典单方程计量经济学模型

第三讲 经典单方程计量经济学模型_数学_自然科学_专业资料。第三讲学习目标: ?...第五章 经典单方程计量... 23页 免费 eviews经典单方程计量经... 81页 免费...

计量经济学大纲

经典单方程计量经济学模型:一元线性回归模型 经典单方程计量经济学模型:多元线性...能应用简 单线性回归模型进行经济预测;初步认识EViews软件,并能应用它进行一元...

计量经济学经典eviews 方程预测

计量经济学经典 eviews 方程预测 本章描述的是用回归方法估计的方程对象对一个单方程进行预测或计算拟合值的过程。 §14.1 EViews 中的方程预测为预测方程的因...

计量经济学第四次作业

练习经典单方程计量经济学模型 二、仪器用具: 仪器名称计算机 Eviews 软件 规格/ 规格/型号 数量 1 1 备注有网络环境 计量经济学 三、实验方法与步骤: 实验方法...

第四章 经典单方程计量经济学模型:放宽基本假定的模型

第四章 经典单方程计量经济学模型:放宽基本假定的模型_交通运输_工程科技_专业资料。经典单方程计量经济学模型: 第四章 经典单方程计量经济学模型:放宽基本假定的模...

计量经济学

第一章 导论 导论 经典单方程计量经济学模型:一元线性回归模型 经典单方程计量...能应用简 单线性回归模型进行经济预测;初步认识EViews软件,并能应用它进行一元...

计量经济学 第四章 经典单方程计量经济学模型:放宽基本...

第四章 经典单方程计量经济学模型:放宽基本假定的模型 一、内容提要 本章主要介绍计量经济模型的二级检检验问题,即计量经济检验。主要讨论对回归模 型的若干基本经典...